
sic

a gildas working group software

30-oct-2007

sic
sympathetic interpretor of commands

sympathique interpréteur de commandes
language sic version 9.2
language gui version 1.2

language vector version 3.2

The GILDAS working group is a collaborative project of the Observatoire de Grenoble (1,3)
and IRAM (2), and comprises: F. Badia2, D. Broguière2, G. Buisson1, L. Desbats1, G. Duvert1,
T. Forveille1, R.Gras3, S. Guilloteau1,2, R. Lucas1,2, R. Neri2 and P. Valiron1.

(1) Laboratoire d’Astrophysique
Observatoire de Grenoble

BP 53 X
414 Rue de la Piscine

F-38402 Saint Martin d’Hères CEDEX

(2) Institut de Radio Astronomie Millimétrique
300 Rue de la Piscine

F-38406 Saint Martin d’Hères

(3) CEPHAG
Observatoire de Grenoble

F-38402 Saint Martin d’Hères CEDEX

Contributions from and invaluable discussions with J. Cernicharo, P. Begou3, S. Delahaye3, A.
Dutrey1,2, C. Kahane1, P. Monger, J.L. Monin1 and all gildas users are gratefully acknowledged.

1

CONTENTS 2

Contents

1 Introduction 8

2 The SIC Monitor 9
2.1 Basic Features . 9

2.1.1 Syntax . 9
2.1.2 The Prompt . 10
2.1.3 The on-line HELP . 10
2.1.4 The Stack . 11
2.1.5 Line Editing Facility . 11
2.1.6 The Log File . 12
2.1.7 Symbols . 12

2.2 Variables and Expressions . 13
2.2.1 Definitions and Assignments . 13
2.2.2 Functions and Operators . 13
2.2.3 Vector Operations . 15
2.2.4 Implicit Loops . 15
2.2.5 Conditional Assignment . 16
2.2.6 Size casting . 16
2.2.7 GILDAS Images . 17
2.2.8 GILDAS Headers . 17
2.2.9 Character Variables and Implicit Formatting 20
2.2.10 Initializing variables from external files . 20

2.3 SIC as a programming language . 21
2.3.1 Procedures (or Command Files) . 21
2.3.2 Loops . 21
2.3.3 Structured Programming and Logical Expressions 22
2.3.4 Execution Level . 23
2.3.5 Error Recovery . 24

2.4 The GUI (“Graphics-User-Interface”) Mode . 25
2.4.1 Detached menus . 25
2.4.2 Assigning variables in “Window” mode . 26
2.4.3 Actions and Buttons in “Window” mode . 27
2.4.4 Help file structure . 27

2.5 Interacting with the Operating System . 28
2.5.1 File Operations . 28
2.5.2 SYSTEM command: VMS Version . 28
2.5.3 SYSTEM Command: Unix operating system 29

2.6 Customizing . 29
2.6.1 Logical Names . 29
2.6.2 User Defined Commands . 30
2.6.3 Initialization File . 30
2.6.4 The SIC Command . 30

CONTENTS 3

3 Running Tasks 32
3.1 Window Mode . 32
3.2 Query Mode . 32
3.3 EDIT Mode . 34
3.4 Specifying the .init File . 35
3.5 Errors and Aborting . 35
3.6 Log Files . 35
3.7 Synchronizing Jobs . 36
3.8 Obtaining Explanations: EXPLAIN Command . 36

4 SIC Programming Manual 37

5 SIC Language Internal Help 37
5.1 Language . 37
5.2 ACCEPT . 37

5.2.1 ACCEPT /ARRAY . 38
5.2.2 ACCEPT /BINARY . 38
5.2.3 ACCEPT /COLUMN . 38
5.2.4 ACCEPT /FORMAT . 39
5.2.5 ACCEPT /LINE . 39
5.2.6 ACCEPT Excel . 39

5.3 BEGIN . 40
5.4 BREAK . 40
5.5 COMPUTE . 40

5.5.1 COMPUTE EXTRACT . 42
5.5.2 COMPUTE DATE . 42
5.5.3 COMPUTE DIMOF . 42
5.5.4 COMPUTE FFT . 42
5.5.5 COMPUTE FOURT . 43
5.5.6 COMPUTE GATHER . 43
5.5.7 COMPUTE GAG DATE . 43
5.5.8 COMPUTE HISTOGRAM . 43
5.5.9 COMPUTE LOCATION . 44
5.5.10 COMPUTE RANKORDER . 44
5.5.11 COMPUTE INTEGRAL . 44
5.5.12 COMPUTE DERIVATIVE . 44
5.5.13 COMPUTE BTEST . 44

5.6 CONTINUE . 46
5.7 DEFINE . 46

5.7.1 DEFINE ALIAS . 46
5.7.2 DEFINE CHARACTER . 47
5.7.3 DEFINE COMMAND . 47
5.7.4 DEFINE DOUBLE . 47
5.7.5 DEFINE FITS . 48
5.7.6 DEFINE FUNCTION . 48
5.7.7 DEFINE HEADER . 49
5.7.8 DEFINE IMAGE . 50
5.7.9 DEFINE INTEGER . 50

CONTENTS 4

5.7.10 DEFINE LANGUAGE . 50
5.7.11 DEFINE LOGICAL . 51
5.7.12 DEFINE REAL . 51
5.7.13 DEFINE STRUCTURE . 51
5.7.14 DEFINE TABLE . 51
5.7.15 DEFINE UVTABLE . 52
5.7.16 DEFINE /GLOBAL . 52
5.7.17 DEFINE /LIKE . 52

5.8 DELETE . 53
5.9 EDIT . 53
5.10 ELSE . 53
5.11 END . 53
5.12 EXAMINE . 54
5.13 EXIT . 54
5.14 FOR . 55
5.15 HELP . 55
5.16 IF . 56
5.17 IMPORT . 56
5.18 LET . 56

5.18.1 LET /CHOICE . 58
5.18.2 LET /FILE . 58
5.18.3 LET /FORMAT . 58
5.18.4 LET /FORMULA . 59
5.18.5 LET /INDEX . 59
5.18.6 LET /LOWER . 59
5.18.7 LET /NEW . 59
5.18.8 LET /PROMPT . 59
5.18.9 LET /RANGE . 59
5.18.10 LET /REPLACE . 60
5.18.11 LET /SEXAGESIMAL . 60
5.18.12 LET /STATUS . 60
5.18.13 LET /UPPER . 60
5.18.14 LET /WHERE . 60

5.19 MESSAGE . 61
5.20 MFIT . 62

5.20.1 MFIT /EPSILON . 63
5.20.2 MFIT /METHOD . 63
5.20.3 MFIT /QUIET . 64
5.20.4 MFIT /START . 64
5.20.5 MFIT /STEP . 64

5.21 NEXT . 64
5.22 ON . 64

5.22.1 ON ERROR . 65
5.23 PARSE . 65
5.24 PAUSE . 66
5.25 PYTHON . 66
5.26 QUIT . 67

CONTENTS 5

5.27 RECALL . 67
5.28 RETURN . 68
5.29 SAY . 68

5.29.1 SAY /FORMAT . 68
5.30 SIC . 68

5.30.1 SIC APPEND . 70
5.30.2 SIC BEEP . 70
5.30.3 SIC CPU . 70
5.30.4 SIC DATE . 70
5.30.5 SIC DEBUG . 70
5.30.6 SIC COPY . 71
5.30.7 SIC DELAY . 72
5.30.8 SIC DELETE . 72
5.30.9 SIC DIRECTORY . 72
5.30.10 SIC EDIT . 72
5.30.11 SIC ERROR . 72
5.30.12 SIC EXPAND . 73
5.30.13 SIC EXTENSION . 73
5.30.14 SIC FIND . 73
5.30.15 SIC FLUSH . 74
5.30.16 SIC HELP . 74
5.30.17 SIC INTEGER . 74
5.30.18 SIC LANGUAGE . 74
5.30.19 SIC LOCK . 74
5.30.20 SIC LOGICAL . 75
5.30.21 SIC MACRO . 75
5.30.22 SIC MEMORY . 75
5.30.23 SIC MESSAGE . 75
5.30.24 SIC MKDIR . 78
5.30.25 SIC MODIFIED . 78
5.30.26 SIC OUTPUT . 78
5.30.27 SIC PRECISION . 79
5.30.28 SIC PRIORITY . 79
5.30.29 SIC RANDOM SEED . 80
5.30.30 SIC RENAME . 80
5.30.31 SIC SAVE . 80
5.30.32 SIC SEARCH . 81
5.30.33 SIC SYNTAX . 81
5.30.34 SIC SYSTEM . 82
5.30.35 SIC TIMER . 82
5.30.36 SIC USER . 82
5.30.37 SIC VERIFY . 82
5.30.38 SIC VERSION . 82
5.30.39 SIC WAIT . 82
5.30.40 SIC WHICH . 83
5.30.41 SIC WINDOW . 83

5.31 SORT . 83

CONTENTS 6

5.32 SYMBOL . 83
5.33 SYNTAX\ . 84
5.34 SYSTEM . 85
5.35 TYPE . 85
5.36 @ . 86

6 GUI Language Internal Help 86
6.1 Language . 86
6.2 BUTTON . 86
6.3 END . 87
6.4 GO . 87
6.5 MENU . 87
6.6 SUBMENU . 87
6.7 PANEL . 88
6.8 WAIT . 88
6.9 URI . 88

7 VECTOR Language Internal Help 89
7.1 Language . 89
7.2 EXPLAIN . 89
7.3 FITS . 89
7.4 HEADER . 90
7.5 RUN . 90
7.6 SPY . 91
7.7 SUBMIT . 91
7.8 TRANSPOSE . 91

8 TASK Language Internal Help 92
8.1 Language . 92
8.2 CHARACTER . 92
8.3 FILE . 93
8.4 GO . 93
8.5 INTEGER . 93
8.6 LOGICAL . 93
8.7 MORE . 94
8.8 REAL . 94
8.9 VALUES . 94
8.10 WRITE . 94

9 SIC Error Messages and Recovery Procedures 95
9.1 A through C . 96
9.2 D . 96
9.3 E . 99
9.4 F . 100
9.5 G . 102
9.6 H . 102
9.7 I . 102
9.8 J trough L . 104

CONTENTS 7

9.9 M . 105
9.10 O through R . 108
9.11 S . 109
9.12 T . 114
9.13 U through Z . 114

10 Task demonstration 116
10.1 demo . 116
10.2 EXAMPLE . 116
10.3 PRIMES . 116

1 INTRODUCTION 8

1 Introduction

sic (*) is a command line interpretor, written in FORTRAN and callable as a subroutine by any
program. It provides a command language rather similar to the VAX-VMS DCL language, with
the following major features:

• resolution of command abbreviations

• definition of symbols

• macro capabilities with arguments substitution during execution

• log file

• multi-language structure

• loop buffers for repetitive actions

• variables, arithmetic and logical expressions evaluation

• structured logical tests

• error recovery

• stack buffer

• keypad editing of command lines on VT200 compatible devices

• NEW!: GUI interface on Motif systems

This manual contains several chapters. Chapter 2 (The SIC monitor) should be read by every
user before using sic. Chapter 3 contains a copy of the internal help files of sic. Chapter 4
is a programming manual for the user who would like to use sic to create its own application.
Chapter 5 is a list of all possible sic error messages and of their most usual recovery procedures.
This reference may be useful if you encounter an error message which you do not understand
while running sic.

2 THE SIC MONITOR 9

2 The SIC Monitor

2.1 Basic Features

2.1.1 Syntax

All commands parsed by SIC must have the following syntax:
[LANG\]COMM [ARG1 [ARG2 [...]]] [/OPT1 [ARG11 [...]] [/OPT2 [...]]

Where LANG is the language name, COMM the command name, OPT1 and OPT2 are option names,
ARGs are the arguments of command and options, and brackets indicate optional fields.

The language, command and option names can be abbreviated and sic checks for ambiguities.
Arguments are separated by any number of separators (Blanks or Tabs). An option is a word
beginning with a Slash. The options, like the commands, may have arguments. The syntax
analyzer converts to upper case letters, strips useless separators, translate the symbols (See 2.5),
expands the command and option names by looking through its current “dictionary”.

The language field is optional. If present, it restricts the resolution of command name ab-
breviations to all languages of which it is an abbreviation. Otherwise, all languages are searched
for.

The first action of the syntax analyzer is to suppress redundant separators. This is of course
not always wanted (e.g. a figure caption) and sic offers one way to circumvent this problem:
the so-called strings, which are arguments included between double quotes ("). Strings are not
modified by the syntax analyzer, but the outer double quotes will be ignored when the argument
is used. However, strings are not protected against symbol substitution.

The program calling sic may expect arguments of various types: character strings, real num-
bers, integers or logicals. For a specified type, e.g. a real number, the argument can be either
a constant value (e.g. 3.14159), a variable (e.g. PI), or an expression (e.g. 2*ASIN(-1.0)).
Conversion to the specified type is done automatically if possible at all (See 2.13).

A “-” sign as the last significant character in a command line indicates that a continuation
follows on the next line (as in DCL command language) e.g.

SIC> HELP -
SIC> EDIT

is interpreted as

SIC> HELP EDIT

No special procedure is used to cut strings for continuation lines. It is simply done according
to the following example

SIC> LABEL "A very long-
SIC> string must be cut"

which is interpreted as

SIC> LABEL "A very long string must be cut"

Comments may appear at the end of any line. The comment area starts with a “!” sign; all
the following text is ignored. Comments can be used in conjunction with the continuation mark
:

SIC> DRAW RELOCATE 13- !This is an example of comments
SIC> .45 15.00 /USER ! and continuation

2 THE SIC MONITOR 10

is interpreted as

SIC> DRAW RELOCATE 13.45 15.00 /USER

BUT do not try this one

SIC> LABEL "A lon- ! A long string
SIC> g caption" ! with continuation mark

which produces the message

E-INTER, Unbalanced quote count

immediately after the first line as been typed in, because the syntax analyzer was considering
the - and ! signs as part of a string. Comments may be convenient to self-document complex
procedures.

2.1.2 The Prompt

The prompt is defined by the calling program. In addition, sic modifies the prompt aspect
according to the execution level. In this example the calling program is assumed to pass the
string ’GAG’ to sic. Then the following prompts may appear :

GAG> ! Lowest execution level
GAG_3> ! Third execution level
GAG_5: ! Compile mode for the Loop buffer at level 5

2.1.3 The on-line HELP

The HELP utility of sic is structured at three different levels. Without an argument, HELP gives
the list of available help. Since sic is a multi-language system, HELP Language Name\ prints
one line description of all commands of the named language. For example, HELP SIC\ gives a
one line description of all the sic monitor commands. HELP Command Name prints more detailed
information on that command. For some command, the help text is divided in subtopics which
can be accessed by typing HELP Command Name Subtopic.

If you consult a long HELP text, you may use the PAGE mode. You will then be prompted for
continuation when the screen is full. The page mode is usually set by default on “intelligent”
terminals, and you can switch between PAGE and SCROLL mode for the help using command

SIC> SIC HELP PAGE or SIC HELP SCROLL

On-line access to the documentation can be obtained by

SIC> SIC HELP CONTENT or SIC HELP INDEX

In CONTENT mode, HELP Command displays the documentation page indicated for the specified
Command by the table of content, while in INDEX mode, the first page indicated in the index is
displayed.

2 THE SIC MONITOR 11

2.1.4 The Stack

The Stack is an internal buffer where commands are automatically placed. It may be considered
as a real time logfile, from which you can retrieve commands. The stack buffer may contain up to
300 commands, less if the commands are very long. It is organized as a circulating buffer, with a
"first in - first out" replacement procedure when the buffer is full, or when the maximum
number of commands is reached. The command number always increase, even when the buffer
fills up.

The command

RECALL [Arg]

recalls command from the stack for execution. Depending on whether line editing mode is possible
(see keypad line editing), the recalled command may be edited prior to submission, or not. If
no argument is present, the last command is recalled. If the argument is a number N, the N-th
command of the stack is recalled. If the argument is a string, the stack is scanned backwards to
find a command beginning by this string.

If line editing is possible, commands may also be retrieved from the stack using the Up and
Down arrows on the terminal keyboard. However to bypass VMS line editing, you must strike
GOLD (<PF1>) key first.

The command

EDIT

without arguments will dump the stack on a file named STACK.DefExt (where DefExt is the
current default procedure extension), and calls the default editor to edit this file. It can then be
executed as any other procedure.

2.1.5 Line Editing Facility

Line editing is normally available to edit command lines prior to submission. The following
control keys can be used

<^A> Move to beginning of line
<^B> Backspace one character (BACKWARD)
<^F> Advance one character (FORWARD)
<^H> Delete previous character (BACKSPACE)
<^J> Delete to beginning of word, or previous word
<^M> Submit command line (RETURN key)
<^N> Recover Next command
<^P> Recover Previous command
<^U> Delete to beginning of line
 Delete previous character

These commands are identical to the standard line editing in the Emacs editor.
If you are using an ANSII compatible terminal (VT100 series and upwards), the numeric

keypad is also available to perform additional actions

<PF4> Delete to end of line
<-> Delete to end of word, or next word
<LF> Delete to beginning of word, or previous word

2 THE SIC MONITOR 12

<,> Delete character
 Delete previous character
<1> Move to next word
<2> Move to end of line
<4> Set advance mode (for WORD moves)
<5> Set backup mode (for WORD moves)
<ENTER> Submit the command line
<RETURN> Same as above
<Up Arrow> Retrieve previous command of Stack
<Down Arrow> Retrieve next command of Stack
<Left Arrow> Backward one character
<Right Arrow> Advance one character

These commands are the same as in the EDT Digital text editor, except for Backspace (Ĥ).
For lines longer than the screen width, the display uses a window and automatically centers

it on the current character when the cursor position reaches one end.
Note that on VMS operating systems, this editing mode somehow conflicts with the basic

DEC line editing facility, in the sense that the DEC editing facility has priority over it. To access
to the keypad editing mode you should press the GOLD (<PF1>) key. Otherwise, the Up and
Down arrows will only allow you to retrieve the last typed line (default DEC line editing).

The keypad editing mode can be turned off by the SIC EDIT OFF command and turned on
by the SIC EDIT ON command. Line editing mode affects the error recovery system and the
RECALL command.

2.1.6 The Log File

The Log File is a post-mortem listing of all commands issued and successfully executed during
a working session. It is kept on leaving sic (by using EXIT). Some commands like HELP are not
put into the Log File. Most programs using sic put the Log File in the GAG LOG: area (usually
your default directory, but see “Customizing”) to avoid multiplication of files in a directory tree,
and purge it upon exit keeping the last two or three versions. Log Files can be used as the basis
of subsequent procedures. If you are short of disk space, purge and delete yourself the log files.

2.1.7 Symbols

sic allows the user to define symbols, which are abbreviations of any character string. Any
command line is first parsed for symbols in the symbol table. The command interpretor assumes
that the following entities may be symbols :

• the first word of command line (e.g. AA in command AA /OPTION)

• any string (without spaces) included between single quotes (e.g. ’AA’). This syntax may
also indicate a character variable (See “Character Variables and Implicit Formatting”).

There is no recursive analysis of the line for the symbol translation. Note that, contrary to
character variables, the symbol translation occurs even within strings, and that case does not
matter.

Symbols are defined by issuing the following command

SIC> SYMBOL TOTO "Whatever you want"

2 THE SIC MONITOR 13

A symbol definition may refer to an other already defined symbol. Whenever ’TOTO’ is found in
a command line, it will be replaced by the string Whatever you want e.g.

SIC> LABEL "Units ’TOTO’"

will be interpreted as

SIC> LABEL "Units Whatever you want"

The Symbol Table can be listed using command SYMBOL without arguments. If SYMBOL has
a symbol name for argument, the translation of this symbol is given. DELETE /SYMBOL TOTO
will delete symbol TOTO from the current symbol table. Note that symbols should only include
alphanumeric characters.

2.2 Variables and Expressions

Most of the power of sic comes from its ability to handle variables and perform operations
(arithmetic or logical) on them. When used in combination with the greg program for display,
sic variables can be used to performed efficient data analysis.

2.2.1 Definitions and Assignments

sic supports variables and arithmetic or logical expressions evaluation. Variables can be de-
fined either by the program or by the user. Program-defined variables may have the Read-Only
attribute which prevents them from being overwritten by the user (see sic PROGRAMMING
MANUAL). Variable names are up to 15 characters long, upper case only, and must begin with
a letter. A variable can be LOCAL or GLOBAL. GLOBAL variables are valid at any execution
level in sic. On the opposite, LOCAL variables are valid only in the procedure where they have
been declared, or in any loop started within this procedure, or in any interactive level gener-
ated from this procedure (by a PAUSE or an error). Variables declared by a program are always
GLOBAL.

Arithmetic and logical expressions are automatically evaluated when used as arguments to
commands. The evaluation is done in single or double precision arithmetic, according to command
SIC PRECISION. Parentheses are allowed, but there is a limit on the complexity of arithmetic
and logical expressions. A local variable has precedence over a global variable of the same name.
Local variables are deleted when the creating procedure terminates.

Variables may be defined using command DEFINE, and assigned values using command LET.
sic is a declarative language in which all variables must be defined before being used. For
convenience, command LET has an option /NEW which allows declaration of the assigned variable.
Five type of variables are allowed : REAL, INTEGER, LOGICAL, DOUBLE (for double precision real
variables), and CHARACTER.

Variable values may be typed using the EXAMINE command, which also indicates whether the
variable is GLOBAL or LOCAL, and in the latter case, the corresponding procedure level.

2.2.2 Functions and Operators

For arithmetic expressions, the known operators are

- Subtraction
+ Addition

2 THE SIC MONITOR 14

* Multiplication
/ or | Division (the | sign has been added because the /

is the option separator)
** or ^ Exponentiation

Known single argument functions are

ABS Absolute value
ACOS Arc Cosine
ASIN Arc Sinus
ATAN Arc Tangent
COS Cosine
COSH Hyperbolic Cosine
EXP Exponential
INT Integer Part
LOG Natural logarithm
LOG10 Decimal Logarithm
NINT Nearest Integer
FLOOR Integer floor
CEILING Integer ceiling
SIN Sinus
SINH Hyperbolic Sinus
SQRT Square Root
TAN Tangent
TANH Hyperbolic Tangent

Known two arguments functions are

ATAN2 Arc tangent with two arguments
MAX Maximum of two values
MIN Minimum of two values
MOD Modulo (true modulo, even for negative numbers)
SIGN Sign transfer

For logical expressions, the known operators are

.OR. .AND. .NOT.

.GT. .GE. .LT. .LE.

.NE. .EQ.

Note that there must be no blanks in the logical expressions. The known functions are

EXIST Returns .TRUE. if its argument is a defined variable
FILE Returns .TRUE. if its argument is an existing file.

Additional arithmetic functions may be declared by the calling programs. Two special func-
tions are always declared :

2 THE SIC MONITOR 15

NOISE(x) Gaussian Noise of Sigma X
RANDOM(x) Random Number between 0 and X

These additional functions, and their number of arguments, can be listed using command
EXAMINE /FUNCTION.

2.2.3 Vector Operations

sic supports array variables of up to 4 dimensions. Array dimensions are specified between
brackets (not parentheses) with the comma as separators. CHARACTER and LOGICAL variables can
also be arrays. Arithmetic operations always work on arrays on an element by element basis.
Scalar variables are considered like arrays of any size. For example,

DEFINE REAL A[5] B[5]
LET A = ABS(B)
LET B = 1.0

assigns to each element of A the absolute value of the corresponding element of B, and then
assigns to each element of B the value 1.0. Dimensions of arrays must match in arithmetic
expressions.

Any subset of an array variable can be referenced in an expression, for example

DEFINE REAL A[5] B[5,10] C[5,10,3]
LET B[,6] = A
LET C[,10,1] = B[,3]

Dimensions of the sub-arrays must also match. Transposition is now supported : e.g. in the
precedent example, C[1,,1] could have replaced C[,10,1]. The indices can be previously defined
scalar variables. Leading commas may be omitted.

DEFINE REAL A[5] B[5,10] C[5,10,3]
LET B[,6] = A
LET C[,10,1] = B[,3]

It is also possible to specify a range of indexes rather than a single index.

DEFINE REAL A[5] B[3,10] C[4,4,4]
LET B[,6] = A[2:4]
LET A[:3] = B[,8]
LET A[2:5] = C[3,,4]

2.2.4 Implicit Loops

It is sometimes convenient to assign to an array values which are functions of the array indices.
This can be done using “implicit loops”, such as

DEFINE REAL A[10,10]
LET A[I,J] = EXP(-((I-5)|2)**2-((J-6)|3)**2)

in which I and J have NOT been declared as known variables. I and J are known as “implicit
variables”. The preceding expression is equivalent to the following commands

2 THE SIC MONITOR 16

DEFINE REAL A[10,10]
FOR J 1 TO 10
FOR I 1 TO 10
LET A[I,J] = EXP(-((I-5)|2)**2-((J-6)|3)**2)
NEXT
NEXT

but it executes thousands of times faster... Mixing of implicit and declared (or loop) variables is
strictly forbidden at present. It can usually be avoided by using intermediate arrays.

2.2.5 Conditional Assignment

Another convenient function is to assign to an array new values only in for some parts of the
array, based on a logical mask or logical expression. The option /WHERE of command LET allows
such operations. For example

DEFINE REAL A[10,10]
LET A[I,J] = EXP(-((I-5)|2)**2-((J-6)|3)**2) /WHERE (I+J).LT.10

will set only a part of the A array (note that I and J are “implicit variables”).
The preceding expression is equivalent to the following commands

DEFINE REAL A[10,10]
FOR J 1 TO 10
FOR I 1 TO 10

IF (I+J).LT.10 THEN
LET A[I,J] = EXP(-((I-5)|2)**2-((J-6)|3)**2)

ENDIF
NEXT
NEXT

but it executes thousands of times faster...
Conditional assignment can be mixed with implicit loops, as shown above, but there are some

syntax restrictions: please refer to the internal help for more details.

2.2.6 Size casting

Typing the explicit dimensions when declaring a new variable may be tedious. SIC allows to
create arrays of dimensions identical to those of existing variables through the /LIKE option. For
example, if A is an existing integer variable of dimensions 10,5,30 the following command

DEFINE REAL B C D /LIKE A

is equivalent to

DEFINE REAL B[10,5,30] C[10,5,30] D[10,5,30]

and defines three real arrays of dimension [10,5,30]. This feature, called size casting, is specially
convenient to declare arrays that match images (see below).

2 THE SIC MONITOR 17

2.2.7 GILDAS Images

Variables are normally allocated using virtual memory, and hence are lost once the program
terminates. It is possible to allocate variables as disk files, called Images, which are mapped
into the virtual memory of the program, using command

DEFINE IMAGE Variable File Keyword

where

Variable is the desired variable name. This variable name should be at most 3 characters to
hold the header variables.

File is the name of the file holding the image. Default extension is .GDF (gildas Data Format),
but any extension is valid.

Keyword indicates how the file must be used and may be

READ use an existing image as Read-Only variable

WRITE use an existing image as Read-Write variable. The user must have Write access to
the file.

EXTEND Allows to extend the last dimension of an existing image. The user must have
write access to it.

REAL create a new image of type REAL

DOUBLE create a new image of type DOUBLE

INTEGER create a new image of type INTEGER.

For already existing images (READ, WRITE), the type and size of variable are determined by the
program. For new images, the size must be specified in the variable name, and the variable is
always declared as Read-Write. To EXTEND image, the new value of the last dimension must be
specified in the variable name. Header variables (see next section) are defined with the same
status (Read or Write) as the image.

Images (i.e. files in the gildas data format) are used by most programs distributed by the
Groupe d’Astrophysique. See the gildas (Grenoble Image and Line Data Analysis Software)
documentation. Tables usually refer to images with 2 dimensions, but more generally to images
which do not define a coordinate system.

The DEFINE IMAGE command has two variants, DEFINE TABLE and DEFINE HEADER.
DEFINE TABLE only defines a single variable pointing to the image content. On the opposite
DEFINE HEADER defines only the header variables, as described in next section.

2.2.8 GILDAS Headers

The DEFINE IMAGE command allows sic to access not only to the content of an image (the
data value), but also to all its associated parameters; DEFINE HEADER allows access only to these
associated parameters. The header variables have names derived from the generic name by adding
the special character % and an extension (such as e.g. NDIM for the number of dimensions) to the
generic header name. For example, command DEFINE HEADER VAR file.gdf READ also creates
the following variables:

2 THE SIC MONITOR 18

VAR%GENE Integer Length of general section
VAR%NDIM Integer Number of dimensions (ReadOnly)
VAR%DIM Integer[7] Dimensions (ReadOnly)
VAR%CONVERT Double[3,7] Conversion formulae for the 7 axes:

Reference pixel,
Value at reference pixel,
Increment

VAR%BLAN Integer Length of blanking section
VAR%BLANK Real[2] Blanking and tolerance
VAR%EXTREMA Integer Length of extrema section
VAR%MAX Real Maximum
VAR%MIN Real Minimum
VAR%MINLOC Integer[7] Position of min value
VAR%MAXLOC Integer[7] Position of max value
VAR%DESC Integer Length of units and system section
VAR%UNIT Char*12 Image unit
VAR%UNIT1 Char*12 First axis type
VAR%UNIT2 Char*12 Second axis type
VAR%UNIT3 Char*12 Third axis type
VAR%UNIT4 Char*12 Fourth axis type
VAR%SYSTEM Char*12 Coordinate system
VAR%POSI Integer Length of position section
VAR%SOURCE Char*12 Source name
VAR%RA Double Right Ascension
VAR%DEC Double Declination
VAR%LII Double Galactic longitude
VAR%BII Double Galactic latitude
VAR%EPOCH Real Epoch of coordinates
VAR%PROJ Integer Length of projection section
VAR%PTYPE Integer Projection type (code)
VAR%A0 Double first coordinate of projection center
VAR%D0 Double second coordinate of projection center
VAR%ANGLE Double position angle of projection
VAR%X_AXIS Integer First projected axis
VAR%Y_AXIS Integer Second projected axis
VAR%SPEC Integer Length of spectroscopy section
VAR%LINE Char*12 Line name
VAR%FREQRES Double Frequency resolution
VAR%FREQOFF Double Frequency offset
VAR%RESTFRE Double Rest Frequency
VAR%VELRES Real Velocity resolution
VAR%VELOFF Real Velocity offset
VAR%F_AXIS Integer Frequency/Velocity axis
VAR%BEAM Integer Length of beam section
VAR%MAJOR Real Major axis of beam
VAR%MINOR Real Minor axis of beam
VAR%PA Real Position angle of beam

2 THE SIC MONITOR 19

VAR%SIGMA Integer Noise section length
VAR%NOISE Real Theoretical noise
VAR%RMS Real Actual noise
VAR%PROPER Integer Proper motion section length
VAR%MU Real[2] along RA and DEC, in mas/yr
VAR%PARALLAX Real Parallax in mas

In addition, the following variables are also created when accessing gildas UV Tables through
the DEFINE UVTABLE command:

VAR%NCHAN Integer Number of channels
VAR%NVISI Integer Number of visibilities
VAR%NSTOKES Integer Number of Stokes parameters
VAR%NATOM Integer Complex visibility size
VAR%BASEMIN Real Minimum baseline
VAR%BASEMAX Real Maximum baseline

VAR becomes a dummy variable of type header, which can only be referenced in a further
DELETE /VARIABLE command. The VAR%item variables are ReadOnly or ReadWrite according to
the keyword following the filename, except for the dimension variables (VAR%DIM and VAR%NDIM),
which cannot be modified.

Full headers can be copied to one another, using the command

LET A% = B%

which copies the header of image B into that of image A (dimensions are not modified, however).
Thus a full copy of a 4 dimensions gildas data file can be obtained within sic as follows:

DEFINE IMAGE A Oldfile.gdf READ
DEFINE INTEGER N1 N2 N3 N4
LET N1 A%DIM[1]
LET N2 A%DIM[2]
LET N3 A%DIM[3]
LET N4 A%DIM[4]
DEFINE IMAGE B[N1,N2,N3,N4] Newfile.gdf REAL
LET B A ! Copy A data into B
LET B% A% ! Copy A header into B header
DELETE /VARIABLE B ! Deletes the SIC variables, but not the file...

A simpler (and more generic) way to declare new images is to use the size casting provided
by the /LIKE option:

DEFINE IMAGE A Oldfile.gdf READ
DEFINE IMAGE B Newfile.gdf REAL /LIKE A ! Define B like A...
LET B A ! Copy A data into B
LET B% A% ! Copy A header into B header
DELETE /VARIABLE B ! Deletes the SIC variables, but not the file...

2 THE SIC MONITOR 20

2.2.9 Character Variables and Implicit Formatting

In contrast with the Symbols, which are substituted in the command line before the parsing,
variables and expressions are evaluated after the command line analysis. In general, a real (resp.
integer and logical) argument is considered as a mathematical (logical) expression and evaluated
when read by the program calling sic. The command line stored in the stack and logfile contains
the mathematic expression, not the current value.

The behaviour for Character variables is slightly different, in the sense that only items in-
cluded between single quotes are considered as possible character variables, if they have not yet
been expanded as known symbols of course. Using character variables in logical expressions is
an exception to this rule because translation should be avoided in this case, see next chapter.
Contrary to Symbols, Character variables translation does not occur in strings.

Not only Character variables but also any mathematical and logical expression may be in-
cluded between quotes. Mathematical expressions are evaluated and formatted using the shortest
possible format. Logical expressions are evaluated as YES or NO. The formatted command string
is substituted to the expression and quotes, and used in the string returned as character argu-
ment to a command. This feature is known as “Implicit Formatting”. In this way, non-character
variables and expressions can be used where a character argument is required. The reverse is not
true however: Implicit Formatting should not be used if a non-character argument is expected.

Any variable can be typed using the EXAMINE command which will display the variable name
followed by its current value. More than one variable may be displayed at the same time using
the SAY command.

Concatenation of variables is easily obtained by mixing explicit strings (between double-
quotes) and implicitely formatted variables. For example, is A is character variable of content ”I
am”, the following command

LET B "You know "’A’" happy"

attributes to B the content ”You know I am happy”.

2.2.10 Initializing variables from external files

sic allows easy initialization of variable from files in “foreign” format (i.e. not gildas images).
This can be done with the ACCEPT command, which allows reading variables from formatted or
unformatted files. This command is available in 3 major modes

• ACCEPT /ARRAY
ACCEPT Var /ARRAY File [/FORMAT String] [/LINE Begin [End]]
reads in free format or user specified format variable Var from file File, selecting a line
range if specified. Var may have up to 4 dimensions.

• ACCEPT /BINARY
ACCEPT Var /BINARY File [Skip]
reads the binary file File to set variable Var. Skip is a number of BYTEs to skip before
reading. Note that there is no type conversion in this command: the binary content of the
file must match the type declared for the variable.

• ACCEPT /COLUMN
ACCEPT V1 [V2 [...]] /COLUMN File [/FORMAT String] [/LINE Begin [End]]
reads the formatted file File to set one or several 1-dimensional variables V1 V2 Free

2 THE SIC MONITOR 21

format is used by default, unless the /FORMAT option is specified. The special argument *
can be used instead of the variable name to indicate a “dummy” variable, which is read
from the file, but not assigned. This allows to skip a column in the input file.

2.3 SIC as a programming language

The second most important power of the SIC command language is its programming features.
SIC supports command procedures, loops and conditional execution of statements in procedures.

2.3.1 Procedures (or Command Files)

sic has command procedure capabilities. A procedure is an external file containing valid com-
mands. The sic variables PRO%NARG (number of arguments) and PRO%ARG[:] (arguments
as an array of character strings) can be accessed from within the procedure; they describe the
arguments passed to the procedure when it was invoked. The tokens &1, &2, ..., &8 can also be
used in the body of the procedure, its arguments will be substituted for these tokens. Substitution
occurs also within the character strings. A procedure is executed by

SIC> @ Procedure_Name [P1 ... PN]

Commands are read from the file Procedure Name (with a default extension depending on
the calling program or the user) and executed. P1 is a parameter string to be evaluated from
PRO%ARG[1] or substituted to the token &1 during execution. Up to nine parameters may be
passed to the procedure. The commands are echoed to the user’s terminal if the VERIFY switch is
set ON. Most programs using sic define a default procedure extension equal to the program name
(such as .GREG, .CLASS, etc...). If not specified, the default macro extension is .PRO. It can
be listed and changed using command SIC EXTENSION.

Procedures (or any text file indeed) can be typed from within sic using the command TYPE.

SIC> TYPE Procedure_Name

If no argument is given to TYPE, the stack buffer is listed.

2.3.2 Loops

FOR Variable List

opens a FOR-NEXT loop to be executed for values given in the list.
This command may have the following format :

FOR I n1 n2 n3 to n4 by n5 n6 to n7

where I is the loop variable name. Loop variables must not be previously defined, and are
undefined when the loop execution is finished. The prompt changes to ’SIC n: ’, where n is
the current sic execution level, and all subsequent commands until NEXT are the body of the loop.
The loop variable can be used as any other sic variable, e.g. in arithmetic expressions such as
EXP(-(I+3.5)**2). In addition, it can be used in a formatted way when it is included between
quotes, e.g. in NAME.EXT;’I’. In this case, the substitution occurs also within the character
strings (see “Implicit Formatting”). The commands are echoed to the user’s terminal if the
VERIFY switch is set ON.

Up to 9 loop levels can be nested, and there is no restriction upon the loop and procedure
nesting, e.g.

2 THE SIC MONITOR 22

SIC> FOR I List1
SIC> FOR J List2
SIC> ..
SIC> NEXT
SIC> FOR J List3
SIC> ...
SIC> NEXT
SIC> NEXT

is perfectly valid.

FOR /WHILE Logical_Expression

This is another possible syntax for FOR-NEXT loops. The loop is executed conditionally pro-
vided “Logical Expression” is TRUE. “Logical Expression” must be any valid logical expression,
possibly including arithmetic sub-expressions in it.

2.3.3 Structured Programming and Logical Expressions

sic includes structured logical tests of the form

IF Logical_Expression [THEN]
...

ELSE IF Logical_Expression [THEN]
...

ELSE
...

ENDIF

The syntax is similar to FORTRAN with two major differences. First, the logical expression of
an IF command cannot be followed by another command to be executed, and the THEN keyword
is optional. Second, ELSE and IF must be separated by at least one space or tab in the ELSE IF
command. Nesting of IF blocks up to 20 levels is allowed. In addition, provided the restriction
on the number of loops, procedures and IF blocks is met, any nesting between loops, procedures
and IF blocks is allowed.

Variables can appear in the logical expressions, and this is one of the most frequent use for
variables. An IF block must be complete in a procedure or loop, otherwise an error occurs.

Logical expressions may include operations on arithmetic, logical or character variables. In
logical expressions, strings (i.e. text included between double quotes) are recognized as character
constants. Character variables should not be included between single quotes, since their current
values would be substituted by sic before logical expression analysis. Arithmetic sub-expressions
are allowed.

Assuming GOOD is a character variable whose current value is "Let it be", and PI =
3.1415926535897932 (Double precision), examples of valid logical expressions are :

L = ("I am happy".EQ.GOOD) (.FALSE.)

L = ("Let it be".EQ.GOOD) (.TRUE.)

2 THE SIC MONITOR 23

L = ("I am happy".EQ."’GOOD’") (.TRUE.)
evaluated literally since GOOD is not substituted in a string

L = PI.EQ.ACOS(-1.0) (.TRUE.)

L = ’PI’.EQ.2*ASIN(1.0) (.FALSE.)
evaluated as 3.141592653589793.EQ.2*ASIN(1.0)
because of implicit formatting, one digit being lost in the
formatting because of binary to decimal conversion.

L = ("I am happy".NE.GOOD).OR.(PI.EQ.ACOS(-1.0))

But the following expressions are invalid :

L = (PI.EQ.GOOD) Variable type mismatch.

L = ("I am happy".NE.’GOOD’)
Because it is evaluated as ("I am happy".NE.Let it be).

2.3.4 Execution Level

Procedures and Loops can be nested. Hence, sic may operate at different Levels of Execution.
Commands are provided to activate some level (@, FOR), suspend (PAUSE), resume (CONTINUE)
or abort its execution (NEXT, QUIT, BREAK, RETURN). Errors occuring within a non-interactive
execution level generate a PAUSE, which returns interactive control to the user at a level im-
mediately higher. The prompt at level I changes to ’SIC I> ’ to remind the user what sic is
doing.

It is also possible to interrupt a sequence of commands (procedure or loop) by pressing <^C>
at any time. The current command is then normally completed (unless it traps the <^C> by
itself), but a PAUSE is generated when the command terminates.

Related commands :

BREAK
Aborts Loop execution without generating an error. The loop is considered to have com-
pleted successfully, and execution resumes at the command line following the NEXT com-
mand of the loop.

CONTINUE
resumes Procedure or Loop execution after a PAUSE, either explicit or generated because
of an error condition. C is always a non ambiguous abbreviation of CONTINUE, unless you
redefine it as a Symbol.

EXIT
exit from the program.

NEXT
The effect of this command depends on the context:

• If encountered while entering loop commands (during loop compilation), it ends the
loop definition and activates its execution.

2 THE SIC MONITOR 24

• If encountered during loop execution, all commands left in the loop are skipped and
loop execution starts again for next index value. This typically occurs when it is
specified as error handling (ON ERROR NEXT), or typed interactively after a PAUSE has
occured.

PAUSE
sets a break point in the Loop or a Procedure. PAUSE returns control to the user when
executed in any of the non-interactive modes (Loop and Procedures). Any valid command
can be executed while in interrupt mode. The normal execution of the interrupted level can
be resumed by typing CONTINUE. NEXT and QUIT may also be valid continuation sequences.
The PAUSE command can be followed by a character string argument which is printed
before the PAUSE becomes effective.

QUIT
If QUIT is typed after a PAUSE occured in a Procedure or Loop, the execution of the in-
terrupted procedure is aborted, and one returns to the previous level of execution. In this
case, an error condition is transmitted to the previous level to allow the user to take the
appropriate decision.

RETURN
Terminates procedure execution, and returns to the previous level of execution. An implicit
RETURN is always executed at the end of the command file. Command RETURN BASE returns
to the normal interactive level (level 0). Command RETURN ERROR returns to the previous
level of execution, but also transmit an error status to this level.

2.3.5 Error Recovery

sic has a powerful error recovery system. Every command returns to the sic monitor a status to
indicate if any error occured. If so, by default sic attempts to make a PAUSE. In an interactive
session, there is a (presumably intelligent) user to decide what to do, and who can hopefully
correct the error (a typing mistake for example) and then type CONTINUE to proceed. In a non-
interactive session (Batch or command procedure), no such intelligent decision is possible and
the PAUSE causes an Abort of the program.

If keypad edition is possible, the command which caused the error is automatically displayed
for correction by the user. The prompt is put in inverse video to indicate that edition is going
on. The corrected line will be submitted whenever <RETURN> or <ENTER> keys are pressed.

It is possible to override this default behaviour by command

ON ERROR [Other command]

After this command has been issued, any error will attempt to execute the "Other command". If
this command happens to fail, sic will try to make a PAUSE. This command can be any command
of the program, including @, CONTINUE, EXIT, NEXT. They will behave exactly has usual, except
command QUIT.

In interactive mode, the QUIT command is usually typed to abort an erroneous procedure. In
this case, it decreases the execution level by 2, and transmit an error to this new level to signal
an abnormal end of some procedure. In error recovery mode, QUIT directly transmit the error
to the previous level. It is in fact translated into RETURN ERROR.

2 THE SIC MONITOR 25

Judicious use of the ON ERROR command may enable you to make batch jobs very conveniently.
In particular, think of the behaviour of ON ERROR NEXT and ON ERROR BREAK when using loops,
and ON ERROR RETURN when using procedures.

The ON ERROR command is a local command: that means it is only valid within the
procedure which declared it (and loops executed within this procedure). However, if a PAUSE
occured from a procedure (or loop), an interactive execution of the ON ERROR command will
reset the error processing behaviour of the interrupted procedure.

2.4 The GUI (“Graphics-User-Interface”) Mode

When a windowing system is available, sic provides facilities (called GUI mode) to create docu-
mented input windows by which the user can modify variables and execute pre-defined commands.
Currently, such facilities are available for Motif-based systems (soon for MAC-OS, and later for
Windows-95).

sic can create 3 types of windows:

• Detached menus
which are menu bars created by the GUI\PANEL /DETACH command. These menus have no

associated parameters, but run in parallel with the main program. Pre-defined commands
are activated by pressing the various buttons.

• Main input window
which is created by the GUI\PANEL command. The user can modify variables using widgets,
and execute one or several actions by pressing the appropriate buttons. The variables are
actually modified only when a button is pressed.

• Optional windows
which are created by the GUI\BUTTON command. Such windows are a with a specific

command, and are hidden by default. They are typically used to hold variables which
are seldom modified by the user. The variables defined in these windows and in the main
window are modified when the GO button is pressed.

User input with this system is fairly intuitive. Help is available by clicking on the help button(s)
or on the prompt area for each variable.

The following description rather concerns advanced users who want to create their own window
interfaces.

2.4.1 Detached menus

Detached menus are created using the GUI\PANEL /DETACH command. Once created, buttons
and pulldown menus can be defined within the detached menu using respectively the GUI\BUTTON
and GUI\MENU commands respectively. There are no associated variables to the detached menus.
Help is available through a Help button. The menu is mapped when the GUI\GO command is
typed.

The following procedure illustrates how to create a detach menu; it creates a menu bar with
3 pulldown menus and a help button.

!
GUI\PANEL "GRAPHIC X-Window interface" PR:GRAPHIC_SIC.HLP /DETACH
!

2 THE SIC MONITOR 26

GUI\MENU "SIC"
GUI\BUTTON "SIC\PAUSE" PAUSE
GUI\BUTTON "SIC\CONTINUE" CONTINUE
GUI\BUTTON "SIC\QUIT" QUIT
GUI\BUTTON "SIC\NEXT" NEXT
GUI\BUTTON "SIC\BREAK" BREAK
GUI\BUTTON "SIC\EXIT" "Exit"
!
GUI\MENU "Graphic"
GUI\BUTTON "DEVICE IMAGE WHITE" DEVICE
GUI\BUTTON "CLEAR PLOT" CLEAR
GUI\BUTTON "ZOOM" ZOOM
GUI\BUTTON "HARDCOPY /PRINT" HARDCOPY
GUI\MENU /CLOSE
!
GUI\MENU "Program(s)"
GUI\BUTTON "@ PR:X_WHOLE.GRAPHIC" "Interfero"
GUI\BUTTON "@ PR:X_DISPLAY.GRAPHIC" "Display"
!
GUI\GO

Several detached menus can be activated at once.

2.4.2 Assigning variables in “Window” mode

When the “Main input window” has been created, the LET command behaves in a different way
when any of the following options is set: /PROMPT, /CHOICE, /INDEX, /RANGE, /FILE

Rather than taking the variable value from the keyboard-typed command line, the LET com-
mand has no immediate action, but defines a widget in the “Main input window” (or “Optional
window”). This widget will allow the user to define the variable value using the windowing
system. 5 types of widgets are available:

• Text widget
This is the default widget created when option /PROMPT is present. The content of the text

widget will be used to set the variable.

• Slider widget
This widget is activated when option /RANGE is present. The widget consists both in a

numeric area and a slider limited by the given range, and can be used to set a real or integer
variable.

• Choice widget
This widget is activated when option /CHOICE is present. The widget consists in a text

widget and a pulldown menu containing all specified choices. The user can select its choice
with this menu. If the last choice is a “*”, any other text can also be entered.

• Index widget
This widget is activated when option /INDEX is present. This widget is similar to the

Choice widget, but the returned value is an integer corresponding to the sequence number
of the selected choice.

2 THE SIC MONITOR 27

• File widget
This widget is activated when option /FILE is present. The widget consists in a text widget
and a file selection widget with the specified file filter.

The “Main input window” is actually created with all defined widgets when command GUI\GO is
typed.

2.4.3 Actions and Buttons in “Window” mode

The “Main input window” is created when command GUI\GO is typed. Four buttons are defined
by default:

• the OK button,
which sets all variables defined in the main and optional windows. This button also executes
the command passed as argument to the GUI\GO command (if specified).

• the UPDATE button,
which sets all variables defined in the main and optional windows, without executing the
(optional) command passed as argument to the GUI\GO command.

• the ABORT button.
Variables are not modified, and an error is sent to the main program.

• the HELP button.
This button displays the help file specified in the GUI\PANEL command.

Additional buttons can also be added to the “main window” using the GUI\BUTTON command.
Two types of buttons exist

• Buttons with no associated parameters. These buttons appear just after the 3 main buttons.

• Buttons with optional parameters. These buttons appear sequentially with the variables,
and have an associated parameter or “optional” window. When such a button is defined,
all subsequent LET commands create widget in a “optional” window. This window is by
default hidden, but can be unveiled by the user.

The “optional” window provide a way to hide some non-essential parameters, and/or to create
a “main window” with a control panel defining many actions, each action having its own input
window and separate help.

2.4.4 Help file structure

Command GUI\PANEL allows to associate an help file to the main window or detached menus,
and command GUI\BUTTON does the same for optional windows.

The HELP files format should be

1 Description
General help for the window or menu

2 NAME1
help for variable NAME1

2 NAME2
help for variable NAME2

1 ENDOFHELP

2 THE SIC MONITOR 28

where 1 and 2 are in the first column of the text file, and followed by a single space.
Clicking on the HELP button will display the complete help file in a scrolled window. Clicking

in the prompt area of an input variable will display the associated variable name and the help
for this variable (if it exists).

2.5 Interacting with the Operating System

Since SIC was designed to be portable on various operating systems (currently VMS, Unix,
Mac-OS, MS-Windows), interaction with the operating system is normally kept to a minimum.

However, many operations eventually deal with files handled by the operating system. To
avoid platform dependencies, SIC allows some basic file operations through the SIC command.

When control is desired at the operating system level, the command SYSTEM can be used to
access it without loosing the SIC context. For user convenience, SIC also accepts the short-cut

$ operating_system command

instead of the more conventional SIC-like syntax

SYSTEM "operating_system command"

2.5.1 File Operations

Operations on the file system can be done directly within SIC.

SIC> SIC DIRECTORY [NewDir]
controls the working directory. Without argument, the current working directory is listed.
With one argument, the working directory is changed. Standard Unix syntax applies to
change the working directory.

SIC> SIC\SIC COPY FileIn FileOut
Copies file FileIn to FileOut. Standard SIC file naming convention applies.

SIC> SIC\SIC DELETE File
Deletes file named File. Caution: no confirmation is required.

SIC> SIC\SIC RENAME FileOld FileNew
Renames file FileOld to FileNew. Standard SIC file naming convention applies. Both files
should reside on the same disk. To move files across different disks, use SIC COPY and SIC
DELETE.

The file operations through the SIC command should be used preferentially to operations
through the SYSTEM command for portability, specially in command procedures.

2.5.2 SYSTEM command: VMS Version

SYSTEM ["Command"]
SYSTEM /PROCESS Process Name
The recommended use of the SYSTEM command is without any argument. In this case, sic

either creates a sub-process or attaches the terminal to a sub-process previously created. The
created sub-process has originally the prompt $$. To return to the sic monitor, type QUIT. Next
SYSTEM commands will attach to the same sub-process which is not deleted when the program

2 THE SIC MONITOR 29

using sic stops. It is recommended to use this form, rather than the command with argument,
because it avoids the overhead of creating one sub-process per command. The sub-process is just
created once.

Before attempting a new process creation, sic identifies the existing subprocesses, and
prompts you to which one you want to attach. Press the RETURN key if you want to create
a new one.

In addition, you can attach to other processes created by other programs or commands using
the SYSTEM /PROCESS command. In this case, to return to sic you have to issue a VMS com-
mand ATTACH Prcnam where Prcnam is the name of the process which is running sic (Use the
VMS command SHOW PROCESS /SUBPROCESS to determine the process name Prcnam). QUIT will
usually not work (although it may).

With arguments, the SYSTEM command effectively activates any valid VAX-VMS command by
creating a temporary sub-process executing the requested command. Control is returned to
SIC after completion of the command. This mode is not recommended because of the overhead
required to create the process. For example you may issue the command

SIC> SYSTEM DIR

to list your current directory. Note that you cannot modify a local assignation in this way
because of the specificities of the sub-process. Quotes are usually not necessary to delimitate
the command passed to VMS; the only exception concerns the options, for which you must avoid
confusion between sic and SYSTEM.

SIC> SYSTEM "DIR /FULL *.PRO" is perfectly valid
SIC> SYSTEM DIR /FULL *.PRO will produce the message

E-INTER, Unknown option /FULL for command SYSTEM

2.5.3 SYSTEM Command: Unix operating system

SYSTEM ["Command"]
Without argument, the SYSTEM command will create a subshell, using the user’s default shell

(sh, csh, ksh, etc. . .). Control will return to the calling program once the subshell terminates
(i.e. using the ’exit’ or ’bye’ or ’logout’ command).

With an argument, the SYSTEM command will execute the corresponding Unix command in a
subshell.

Note that because subshells are used, you cannot change environment variables in this way.
In particular, to change your working directory use the SIC DIRECTORY command.

2.6 Customizing

2.6.1 Logical Names

All programs based on sic read in files specifying Logical names which are used when sicmust
refer to external files (such as procedure or images). Logical names are similar in syntax and
functions to VMS logical names. Two files define general logical names required for sic based
programs to work properly (where to find help files for example) and site-specific features (such
as printer name, scratch space, etc...).

On UNIX and Mac-OS systems, users can specify there own logical names in the file

$HOME/.gag.dico

2 THE SIC MONITOR 30

On MS-Windows systems, “personal” logical names should be set in the file

$GILDAS\dico.lcl

where $GILDAS is the top directory of the Gildas software as defined at installation (normally
\Program file\Iram\Gildas see in the autoexec.bat file on Windows-95).

On VMS systems, standard VMS logical names are used.
Logical names can also be added or modified at run time using the SIC LOGICAL command.

2.6.2 User Defined Commands

sic allows the user to define new command, by means of the DEFINE COMMAND command. The
syntax is the following:

DEFINE COMMAND Newcom "Old Command with arguments" [Help_File]

where NEWCOM is the name of the new command and HELP FILE is an optional text file used to
provide help about the command. Because DEFINE COMMAND does not provide any specific syntax
to specify the use of the new command arguments, it is in practice used essentially to allow
documented access to procedures, as for example in

DEFINE COMMAND INPUT "@ PR:P_INPUT.GRAPHIC" PR:INPUT_GRAPHIC.HLP

2.6.3 Initialization File

Although this is not a default feature of sic, many programs using sic call a initialization macro
at run time to define symbols, execute startup commands and so on. This file is typically named

GAG_INIT:INIT.DefExt

where DefExt is the default macro extension used by the program, and is usually the program
name. Consult the specific programs documentation. GAG INIT is a logical name that normally
points to your login directory.

2.6.4 The SIC Command

The SIC command controls several internal parameters of the sic monitor.

SIC> SIC EDIT [ON] [OFF] [Editor Name]
Controls whether line edition is possible or not, or select the default text editor. On VMS,
use EDT or TPU (Vax Text Processing Utility). On Unix, use "vi" or "emacs" or any
other you wish (note the distinction between lowercase and uppercase). On Unix with
the X-Window system, specifying "emacs &" will allow to launch the editor in a separate
window.

SIC> SIC VERIFY [ON] [OFF]
controls the listing of the command flow. Commands executed in procedure mode (macro
or loop) will be echoed to the terminal if VERIFY is ON, and will not be echoed if is OFF.

SIC> SIC MEMORY [ON] [OFF]
allows to activate or deactivate automatic insertion of commands executed in interactive
mode.

2 THE SIC MONITOR 31

SIC> SIC Language[\] [ON] [OFF] allows to activate or deactivate one of the current lan-
guages of the program. Commands of inactive languages are not scanned by the sic moni-
tor. Language SIC\ itself cannot be deactivated of course.

SIC> SIC HELP [PAGE|SCROLL|CONTENT|INDEX]
controls the HELP mode.

• SCROLL scroll simple help

• PAGE type simple help, with a prompt to the user for continuation after about 20
lines have been typed.

• CONTENT Display PostScript documentation about the command on X-Window
systems

• INDEX Display first reference to the command in the PostScript manual on X-Window
systems.

SIC> SIC PRECISION [SINGLE] [DOUBLE] [AUTO]
controls the precision in which mathematic formulae are evaluated. Automatic precision
uses the precision of the result.

SIC> SIC EXTENSION [.Defext] controls the default macro extension.

SIC> SIC OUTPUT [FileName] can be used to redirect the output of command SAY to the
specified FileName. Without argument, the current SAY output file is closed.

SIC> SIC LOGICAL LogName [Translation] can be used to list, define or redefine logical
names Without argument, all logical names are displayed.

The SIC command without arguments produces a summary of the internal sic status, and
with a single argument it shows the status of that argument.

3 RUNNING TASKS 32

3 Running Tasks

This section contains the minimum information required to use the gildas image processing
tasks.

To run tasks, use the commands RUN and SUBMIT from the VECTOR\ language. Both commands
are very similar. The RUN command will execute the task as a detached process, and the SUBMIT
command in a batch queue named GILDAS BATCH.

The VECTOR\ language contains the following commands :

FITS : A simple FITS -- Gildas conversion tool
EXPLAIN [Task] : Types help about GILDAS tasks
RUN Program : Activates a GILDAS task in a detached process
SPY [Task] : Look at the status of one or all GILDAS tasks.
SUBMIT Program : Submit a GILDAS task to GILDAS_BATCH queue
TRANSPOSE : A command to transpose a Gildas data file.

3.1 Window Mode

The window mode is the default mode on X-Window systems with Motif interface. Let us assume
in the following example we want to execute a task named example. To activate example, the
user will type

VECTOR> RUN example
or

VECTOR> SUBMIT example

A separate input window is created: The user can then modify any of the parameters by clicking
in the dialog areas. Help can be obtained by clicking on the HELP button, or on any parameter
description.

Since sic is used, parameter values can be variables or arithmetic expressions (e.g.
2*PI+EXP(X[3]) is a perfectly valid value for a real, provided the array X[n] with n>3 has
been previously defined).

Once all parameters are defined, the task can be launched by clicking the OK button, or
aborted using the ABORT button. Parameter values are checked, and if all parameters are valid,
the task is executed (or submitted). If one parameter is invalid, the RUN or SUBMIT command
sends back a message :
E-RUN, Missing GO command
and returns an error.

3.2 Query Mode

When no window-mode is available, the user is prompted for the parameters. In this example,
the dialog will be

An integer value
INTEGER I$ 1 <CR>
A value between 0 and 1
REAL A$ 0.1 <CR>
Any character string
CHARACTER CHAIN$ ABCD <CR>

3 RUNNING TASKS 33

3 RUNNING TASKS 34

4 Real values
REAL ARRAY$[4] 1 2 3 4 <CR>
A valid name
FILE FILE$ TESTFILE.DAT <CR>
Any values
VALUES OLD$ acos(-1) 1.234 <CR>

The prompting method is always the same: an explanatory first line indicating the meaning of
the parameter, and a second line in the following format:

TYPE NAME[Dimensions]

where

• TYPE indicates the type of parameter (CHARACTER, FILE, INTEGER, LOGICAL, REAL). A
parameter of type FILE is a character string containing a valid file name. VALUES is intended
to hold multiple values (which can be mathematical expression), without any prior on the
number of values.

• NAME is the parameter name

• [Dimensions] are the parameter dimensions, in case it is an array. Only REAL and INTEGER
parameters may be arrays.

Query mode is also used for missing parameters in Window-mode.

3.3 EDIT Mode

Commands RUN and SUBMIT execute two sic command procedures, the Initialization File
Task.init, which defines all parameters needed for example, and the Checker File Task.check,
which verifies that all parameters are valid. In the example above, the example.init file is

TASK\INTEGER "An integer value" I$
TASK\REAL "A value between 0 and 1" A$
TASK\CHARACTER "Any character string" CHAIN$
TASK\REAL "4 Real values" ARRAY$[4]
TASK\FILE "A valid file name" FILE$
TASK\VALUES "Any values" OLD$
TASK\GO

This is a standard procedure containing commands of a sic language named TASK\. Com-
mands from this language are used to define the parameters required by the task, and cannot be
called interactively. The command syntax is always the same :

TASK\Command "Prompt String" Parameter$[Dimensions] [Value [...]]

where

• Command indicates the type of parameter (CHARACTER, FILE, INTEGER, LOGICAL, REAL).
A parameter of type FILE is a character string containing a valid file name. VALUES is
intended to hold multiple values (which can be mathematical expression), without any
prior on the number of values.

3 RUNNING TASKS 35

• "Prompt String" is a character string used as a prompt to ask for the parameter value(s)

• Parameter$ is the parameter name

• [Dimensions] are the parameter dimensions, in case it is an array. Only REAL and INTEGER
parameters may be arrays.

• Value(s) are the parameter values, an array requiring as many values as array elements.

Once all parameters have been assigned values, RUN and SUBMIT commands execute the
example.check file, writing the current parameter values in an auxiliary file which will be used
by the task example. If a parameter is incorrect, an error is returned, and the task example not
executed.

Instead of supplying the parameters in a query mode, the user can use a text editor to edit
the .init file using command

VECTOR> RUN example /EDIT
or

VECTOR> SUBMIT example /EDIT

The parameter values can then be typed after the parameter names in the example.init file,
using sic continuation marks (“-” as the last character of a line) if needed for long command
lines. example.init will be executed after exiting the editor. If a parameter value is missing,
the user will nevertheless be prompted for it after exiting the editor.

The text editor called is user defined by the command SIC\SIC EDITOR or the logical name
GAG EDIT.

3.4 Specifying the .init File

By default, in Query mode RUN and SUBMIT commands use the .init file located in TASK#DIR:
search path. In EDIT mode, the .init file located in the current default directory is used if it
exists. To override this default behaviour, you can specify any .init file as the second argument
to commands RUN and SUBMIT.

3.5 Errors and Aborting

If an error occurs in the .init or .check procedure, the erroneous command will be returned
to the user, and the procedure execution is interrupted by a pause. You can then correct the
error, execute the command, and type C or CONTINUE to resume the procedure execution. Or you
can type QUIT (as in any sic procedure indeed) to abort the execution, until the RUN or SUBMIT
command returns an error.

You may also want to abort a RUN or SUBMIT command while you are in the editor: typing
QUIT instead of EXIT to end the editing will do it.

3.6 Log Files

A log file is created by the RUN command in your GAG LOG: directory with the task name as file
name and the extension .gildas; this log is printed by the SUBMIT command. If the user is still
running the main program (GreG or Mapping, etc. . .) when a task completes, he (or she) is
warned of the completion with the return status. Log files are not purged automatically, so that

3 RUNNING TASKS 36

you should take care of that. They are intended essentially as a debugging aid if something goes
wrong, but you can print them as archive of your data processing.

A command file is created in your GAG LOG: directory to run or submit the programs. It is in
principle deleted at task completion.

3.7 Synchronizing Jobs

The batch queue GILDAS BATCH should have a job limit of 1, so that all tasks submitted by
command SUBMIT execute in sequence. There may even be intervening jobs from other users.

Tasks activate by command RUN must complete before control is returned to the user.
Command SPY can be used to monitor the execution of tasks activated by command RUN.

3.8 Obtaining Explanations: EXPLAIN Command

There are three ways to obtain help about gildas tasks :

• Using command EXPLAIN: EXPLAIN Atask gives general explanations about the gildas
task Atask, EXPLAIN Atask Apar gives more details about the parameter Apar of the task
Atask.

• Using command HELP. HELP works as EXPLAIN, except when there is ambiguity between a
command name and a task name. In such a case, use EXPLAIN.

• In EDIT mode of commands RUN and SUBMIT, using key GOLD ? allows to obtain help on
the current task.

• In Query mode, answering ? to a prompt returns help on the current parameter.

4 SIC PROGRAMMING MANUAL 37

4 SIC Programming Manual

The sic programming manual has been moved to the gildas programming guide.

5 SIC Language Internal Help

5.1 Language

SIC\ Command Language Summary

ACCEPT : Read variable in various format.
BEGIN : Begin a sub-procedure, help file or data file.
BREAK : Exit without error from a FOR-NEXT loop.
COMPUTE : Execute non-arithmetic operations on variables.
CONTINUE : Resume macro or loop execution after PAUSE.
DEFINE Type V : Define new variables.
DELETE : Delete variables or symbols.
EDIT [File] : Edit a file or a dump of the Stack.
ELSE [IF Log] : Alternate IF block directive.
END : End IF block structure or a sub-procedure.
EXAMINE Var : Type the current value of the specified variable.
EXIT : Exit from the program.
FOR [/WHILE] : Open a FOR-NEXT loop.
HELP XX[\] : Give an explanation of command XX or language XX\.
IF Logical : Start a conditional IF block.
IMPORT Package: Dynamically import another package in current one.
LET [/WHERE] : Assign value to variable.
MESSAGE : Send a message to screen and/or message file.
MFIT A=F(B,p) : Fit a formula into SIC variables.
NEXT : End FOR loop definition and activates the execution.
ON ERROR COMM : Change the current error recovery action.
PAUSE : Set a break point in a Loop or a Macro.
PYTHON : Start/End intercommunication between SIC and PYTHON.
QUIT : Abort an execution interrupted by PAUSE.
RECALL [Text] : Recall line from stack, and edit it if possible.
RETURN : Terminate procedure execution.
SAY "text" : Type a text or variable or expression value.
SIC Arg ON : Change some SIC internal status.
SORT Key Vars : Sort variables according to another one.
SYMBOL : Define, list and delete symbols.
SYSTEM : Create or attach sub-processes, run system commands.
TYPE [XX] : List file XX or the stack.
@ XX [P1 ...] : Read commands from macro XX and executes them.

5.2 ACCEPT

[SIC\]ACCEPT Var_Name /ARRAY File_Name [/options]
[SIC\]ACCEPT Var_Name /BINARY File_Name Offset

5 SIC LANGUAGE INTERNAL HELP 38

[SIC\]ACCEPT Var_1 [Var_2 [...]] /COLUMN File_Name [Separator] [/op-
tions]

Read SIC variables from formatted or binary files. This command has 3
major modes: /ARRAY to read in a FORMATTED way a SINGLE n-dimensional
variable, /BINARY to read in BINARY form a SINGLE n-dimensional vari-
able, and /COLUMN to read in a FORMATTED way SEVERAL 1-dimensional vari-
ables.

5.2.1 ACCEPT /ARRAY

[SIC\]ACCEPT Var_Name /ARRAY File_Name [/FORMAT String] [/LINE Begin
End]

Read a N-Dimensional variable of name Var_Name from a formatted file
File_Name, using list-directed (free) format, or a user specified format
if /FORMAT option is present. The /LINE option can be used to skip some
lines before starting reading. Not recommended for character arrays.

5.2.2 ACCEPT /BINARY

[SIC\]ACCEPT Var_Name /BINARY File_Name [Skip]

Read a N-Dimensional variable of name Var_Name from a binary file
File_Name. The optional Skip argument indicates how many BYTEs to skip
before starting reading.

5.2.3 ACCEPT /COLUMN

[SIC\]ACCEPT Var_1 [Var_2 [...] /COLUMN File_Name [Separator] [/FOR-
MAT String] [/LINE L1 [L2]]

Read ONE or SEVERAL 1-Dimensional variables in a flexible format from a
formatted file File_Name. Each variables can be of any length, from 0
(scalar) to N. They are filled by reading each associated column, start-
ing from first line. Data is read in as many lines as required. If end
of file is reached in the meantime, an error is raised.

Blank or commented lines (starting with a "!") are skipped. The starting
line number can be selected with /LINE option.

A * as an argument of the ACCEPT command indicates a dummy variable used
to skip a column in the input file. For example, the command

ACCEPT A * B C /COLUMN TEST.DAT
reads A,B and C from columns 1,3 and 4 of file TEST.DAT, since the * in-
dicates to skip the second column.

By default, the format is the equivalent of the Fortran list-directed
(*) format. In this format, character strings must be included between

5 SIC LANGUAGE INTERNAL HELP 39

simple quotes. The default can be changed by specifying a separator as a
second argument of option /COLUMN. The separator can be " " (which
gives a behaviour like the COLUMN command of GreG), or any other charac-
ter. For example, specifying "\;" as a separator can allow to read CSV
files (e.g. Excel data files).

Option /FORMAT can also be used to specify a fixed Fortran-like format.

5.2.4 ACCEPT /FORMAT

Specify a fortran format to read the input file for command ACCEPT
/ARRAY or ACCEPT /COLUMN. Mixing CHARACTER and NUMERIC (REAL,...) ar-
rays is not available yet, and only one character array can be read at a
time. Blank or commented lines are not skipped.

Example:
SIC> TYPE cities.dat
Toulouse 1.111 11.11111
Bordeaux 2.222 22.22222
Grenoble 3.333 33.33333
Marseille 4.444 44.44444

(truncated)
SIC> DEFINE CHARACTER CITY*16[44]
SIC> DEFINE REAL X[44] Y[44]
SIC> ACCEPT X Y /COLUMN "cities.dat" /LINE 4 /FORMAT "20x,F8.3,1x,F8.3"
SIC> ACCEPT CITY /COLUMN "cities.dat" /LINE 4 /FORMAT "2x,A16"

This option is invalid with /BINARY.

5.2.5 ACCEPT /LINE

[SIC\]ACCEPT Var_Name /LINE L1

Indicate the first line to be read in the input file for command ACCEPT
/ARRAY or ACCEPT /COLUMN. Blank and commented lines have to be taken in-
to account in L1.

This option is invalid with /BINARY.

5.2.6 ACCEPT Excel

Excel (TM) datafile may be readable by command ACCEPT. They must be con-
verted to CSV format (Comma Separated Values). A suitable use of the
dummy variables in ACCEPT command allows to skip the non-numeric fields.
The proper separator must then be specified using the second argument of
option /COLUMN: e.g.
ACCEPT * Var1 Var2 /File Excel.csv ";" /LINES 2 20

5 SIC LANGUAGE INTERNAL HELP 40

will read Var1 and Var2 from lines 2 to 20 of the corresponding Excel
file, from Excel columns "B" and "C" (second and third).

To be documented: Can character variables also be read with numeric ones
provided some adequate /FORMAT option ?

5.3 BEGIN

[SIC\]BEGIN Procedure|Help|Data FileName

Begin a new Procedure, Help file, or ASCII Data file. All lines until
the corresponding END Procedure|Help|Data FileName command is found are
considered to be the body of the new file. Such files are located in the
directory designated by the logical name GAG_PROC:.

5.4 BREAK

[SIC\]BREAK

Terminate a loop execution. The two uses of command BREAK are usually
ON ERROR BREAK
FOR I 1 TO 3 BY 0.5
...
NEXT

or
LET A = C ! A is a known variable
FOR I 1 TO 100 BY 1
...
IF I+A.EQ.0

BREAK
END IF
NEXT

BREAK differs from QUIT because it does not transmit any error.

5.5 COMPUTE

[SIC\]COMPUTE OutVar OPERATION InVar [Parameters] [/BLANKING Bval
[Eval]]

Perform operations or transformations on variables that are not directly
supported by the array capabilities of the SIC command interpretor. Out-
Var is the output variable, InVar the input variable. Outvar must be de-
fined beforehand.

The following operations are available on INTEGER, REAL and DOUBLE PRE-
CISION arrays, regardless of their nature:
- MAX MIN MEAN RMS SUM PRODUCT MEDIAN

for which InVar is an array of rank 1 to 7 (a 1-D to 7-D array), and

5 SIC LANGUAGE INTERNAL HELP 41

OutVar must be an array of lesser rank (i.e., one or more dimension
less than InVar, down to a number), AND of identical shape as InVar
for the dimensions in common.
Example (if A[4,12,2,8] and B[4,12]):

COMPUTE B MAX A
Sections, implicit transpositions, etc... permitted by SIC are sup-
ported.

- HISTOGRAM: see subtopic HISTOGRAM for details.
Blanking values Bval and Eval allow to ignore values of the Invar array
if at Eval from Bval, for these operations only. At least Bval must be
passed to option /BLANKING, and default is 0.0 for Eval. SET BLANKING
has no effect here since it is a command of the GREG1\ language.
In case of no valid result, NaN is returned, or Bval if blanking is en-
abled. This may occur in particular when all InVar values are blanked.

The following transformations are available:
- GATHER

Return the list of different input values (see subtopic for details)
- RANKORDER

Return the ordering of the input values.
- INTEGRAL or DERIVATIVE

Integral or derivative of the input variable
- FFT+ or FFT-

Direct or Inverse Fast Fourier Transform: see subtopic FFT for de-
tails.

- FOURT+ or FOURT-
Direct or Inverse Fast Fourier Transform: see subtopic FOURT for de-
tails.

- COMPLEX
Populates the Real and (optionally) Imaginary part of OutVar (com-
plex variable) with InVar (real) and (optionally) the Imaginary part
by the following (real) variable name.

- REAL
OutVar = REAL part of InVar. OutVar is Real, InVar is Complex .

- IMAG
OutVar = IMAGE part of InVar. OutVar is Real, InVar is Complex.

- ABS
OutVar = AMPLITUDE (InVar). OutVar is Real, InVar is Complex.

- PHASE
OutVar = PHASE (InVar). OutVar is Real, InVar is Complex.

- CMP* operations as in "COMPUTE OutVar CMPMUL InVar1 InVar2". All
variables must be complex arrays of identical size.
CMPADD: OutVar = InVar1 + InVar2.
CMPSUB: OutVar = InVar1 - InVar2.
CMPMUL: OutVar = InVar1 * InVar2.
CMPDIV: OutVar = InVar1 / InVar2.

5 SIC LANGUAGE INTERNAL HELP 42

Miscellaneous operations (see subtopics for details):
- EXTRACT
- DATE
- DIMOF
- GAG_DATE
- LOCATION
- BTEST Test bit values

5.5.1 COMPUTE EXTRACT

[SIC\]COMPUTE OutString EXTRACT InString Start End

Character string handling: extraction of a sub-string. Returns in Out-
String the sub-string InString(Start:End) (in Fortran notation...)

5.5.2 COMPUTE DATE

[SIC\]COMPUTE Modification_Date DATE Filename

Return the last modification date of the file Filename into the integer
variable Modification_Date. Used in procedures to check when file has
last been changed.

If the output variable is a 4-bytes integer (Fortran I*4), returned val-
ue is in seconds since 01-jan-1970. If the variable is a 8-bytes integer
(Fortran I*8), returned value is in nanoseconds since 01-jan-1970. In
the latter case, your system (e.g. Linux >= 2.5.48) AND filesystem (e.g.
ext4) must support timestamp granularity below the second. If not, value
precision is limited to 1 second.

5.5.3 COMPUTE DIMOF

[SIC\]COMPUTE OutVar DIMOF InVar

Return the shape of array InVar in OutVar[1:7], and its rank in Out-
Var[8]. For this purpose, OutVar must be an INTEGER array of dimension
[8]. Undefined dimensions are set to 0.

5.5.4 COMPUTE FFT

[SIC\]COMPUTE OutVar FFT+|FFT- InVar [REAL]

FFT+ performs Direct Fast Fourier Transform, while FFT- performs Inverse
Fast Fourier Transform.

Command accepts REAL or COMPLEX variables. OutVar is a 2-D array with
second dimension equals 2, storing respectively the Real and Imaginary
part of the (complex) output Fourier transform. By default, InVar is
like OutVar, but if parameter REAL is specified InVar is a 1-D array.

5 SIC LANGUAGE INTERNAL HELP 43

5.5.5 COMPUTE FOURT

[SIC\]COMPUTE OutVar FOURT+|FOURT- InVar

FOURT+ performs Direct Fast Fourier Transform, while FOURT- performs In-
verse Fast Fourier Transform.

Operates on input and output on COMPLEX arrays of dimension [2,NX,NY].

5.5.6 COMPUTE GATHER

[SIC\]COMPUTE OutArray GATHER InArray

Returns in a NEW 1-D variable named OutArray the list of values found in
the (existing) n-D variable InArray. The output array must not exists
and is created by the program itself. It is of the same type as the in-
put array.

NaN and Blanked values are ignored.

5.5.7 COMPUTE GAG DATE

[SIC\]COMPUTE IntDate GAG_DATE "15-DEC-2035"
[SIC\]COMPUTE StrDate GAG_DATE 4127

GAG_DATE keyword converts a string date into a "radio Julian date" (in-
teger value), or vice-versa. The kind of the output variable (resp. in-
teger or character) rules the expected kind for input variable (resp.
character or integer). The output variable must be scalar and writeable,
and the date string should be 11 characters at least.

A "radio Julian date" (or "Jansky Julian date") starts as -2^15 on the
date of the first radio observation by Karl Jansky. It is thus the Modi-
fied Julian date minus 60549. That choice was made to maximize the time
interval over which radio astronomical data could be usefully stored in
an integer*2, back when 2 bytes of header space per spectrum were a sig-
nificant consideration. This date has little meaning outside the rather
sparse community of souls gathered around the CLASS program, however.

5.5.8 COMPUTE HISTOGRAM

[SIC\]COMPUTE OutVar HISTOGRAM InVar [Hmin] [Hmax] [/BLANKING Bval
[Eval]]

Put in variable OutVar (dimension [n,2]) the histogram of values of n-D
variable InVar, eventually between the cuts Hmin and Hmax, and with
blanking values Bval and Eval (that is, values of the Invar array are
not taken in account for the histogram if at Eval from Bval). These pa-

5 SIC LANGUAGE INTERNAL HELP 44

rameters can be absent. One can use ’*’ to omit any of them.

The number of bins is dictated by the first dimension of the array Out-
Var. In the absence of said cuts, the cuts used are the maximum and min-
imum values of the InVar array. The OutVar variable contains the his-
togram in its first column (OutVar[1]) and the corresponding bin value
in the second column (OutVar[2]).

5.5.9 COMPUTE LOCATION

[SIC\]COMPUTE OutVar LOCATION InVar Value

Search for Value in the array InVar, and puts in OutVar the 2 nearest
indices of InVar for which its values surrounds Value. These variables
have some requirements:
- InVar must be a 1D-array of REAL or DOUBLE values,
- Value must be scalar numeric,
- OutVar must be a 1D-array of 2 INTEGER values.

InVar is also intended to be ordered (ascending or descending), or else
the result is unpredictable. Use SIC\SORT to sort arrays.

5.5.10 COMPUTE RANKORDER

[SIC\]COMPUTE OutVar RANKORDER InVar

Compute the order corresponding to the values in InVar. InVar and Out-
Var are assumed to be 1-D variables. This can be used e.g. for statisti-
cal non-parametric tests like the Spearman test.

5.5.11 COMPUTE INTEGRAL

[SIC\]COMPUTE OutVar INTEGRAL InVar

Compute the integral of the InVar variable, in the classical sense, i.e.
OutVar[i] = InVar[1]+Invar[2]+...+Invar[i]

InVar and OutVar are assumed to be 1-D variables

5.5.12 COMPUTE DERIVATIVE

[SIC\]COMPUTE OutVar INTEGRAL InVar

Compute the derivative of the InVar variable, in the classical sense,
i.e.
OutVar[i] = InVar[i]-Invar[i-1]

InVar and OutVar are assumed to be 1-D variables

5.5.13 COMPUTE BTEST

[SIC\]COMPUTE OutVar BTEST InVar [Ibit]

5 SIC LANGUAGE INTERNAL HELP 45

Bit-test one or several bit values of the input variable, and return
true for each bit equal to 1.

The optional integer argument Ibit indicate which bit should be tested.
The default is to check all the bits.

If all the bits of (a single element of) InVar are tested, OutVar must
be an array with its first dimension equal to this number of bits, e.g.
32 for INTEGERs, 64 for DOUBLEs, etc. InVar may be a multi-dimensional
array, in which case OutVar must have the same extra-dimensions.

In details, this tool is an overlay to the BTEST Fortran function (ex-
cept that bit numbering starts at 1 here). Note that this hides the ma-
chine dependencies (IEEE, EEEI, etc) by using a unique integer model re-
gardless of its physical layout. For more information, please refer to
the Fortran documentation.

Examples:

SIC> define integer i
SIC> let i 2
SIC> define logical one
SIC> compute one btest i 1 ! First bit value
SIC> exa one
ONE = F ! Logical GLOBAL

SIC> define logical all[32]
SIC> compute all btest i ! All bit values
SIC> exa all
ALL is a logical Array of dimensions 32
F T F
F F F F F F F F

SIC> define integer i2[3]
SIC> let i2 1 2 3
SIC> define logical one2[3]
SIC> compute one2 btest i2 2 ! Second bit values of the 3 elements
SIC> exa one2
ONE2 is a logical Array of dimensions 3
F T T

SIC> define logical all2[32,3]
SIC> compute all2 btest i2 ! All bit values of all elements
SIC> exa all2[1] all2[2] all2[3]
ALL2[1] is a logical Sub-Array of dimensions 32
T F

5 SIC LANGUAGE INTERNAL HELP 46

F F F F F F F F
ALL2[2] is a logical Sub-Array of dimensions 32
F T F
F F F F F F F F
ALL2[3] is a logical Sub-Array of dimensions 32
T T F
F F F F F F F F

5.6 CONTINUE

[SIC\]CONTINUE or C

Resume loop or macro execution after a PAUSE (explicit or caused by an
error or a <^C>). Typing C instead of CONTINUE will always do exactly
the same thing. This is the only superior abbreviation installed in SIC.

5.7 DEFINE

[SIC\]DEFINE Type Var1 [Keys...] [Var2 [Keys...] [...]] [/GLOBAL]
[/LIKE VarLike]

If Type is FUNCTION, define a user-function. If Type is COMMAND or LAN-
GUAGE, define a new user command or language respectively. Otherwise,
define new variables of the specified type. Type can then be REAL, INTE-
GER, DOUBLE (for double precision real values), LOGICAL, CHARACTER, or
TABLE, HEADER, IMAGE, UVTABLE, STRUCTURE, FITS or ALIAS. By default, new
variables are LOCAL, i.e. valid only within the current macro and all
loops or interactive levels called by this macro. When the /GLOBAL
switch is specified, the variables are valid at all levels. Local vari-
ables are examined before global variables.

5.7.1 DEFINE ALIAS

[SIC\]DEFINE ALIAS AliasName TargetVar [/GLOBAL]

Define a new variable AliasName pointing towards (a subset of) an exist-
ing variable. The new alias shares all the properties of its target:
type, Local or Global status, Readonly attribute. The TargetVar can be a
sub-array, but implicit transposition is not allowed.

If the /GLOBAL option is present, the TargetVar must be a Global vari-
able.

Aliases can be deleted using the standard DELETE /VAR command: this does
not delete the TargetVar variable. On the contrary, when a standard
variable is deleted, all aliases attached to it are also deleted, since
the variable content disappears.

Structures cannot have aliases, but structure members can.

5 SIC LANGUAGE INTERNAL HELP 47

5.7.2 DEFINE CHARACTER

[SIC\]DEFINE CHARACTER Var1*Lvar1[DIM1] [...]
[SIC\]DEFINE CHARACTER*Length Var1[DIM1] [...]

CHARACTER variables can be scalar or multi-dimensional. The length of
CHARACTER variable is specified after an * either after CHARACTER key-
word or after the name of the variable. When both are present, the per-
variable length has precedence. The dimension field (same syntax as for
other arrays) should follow the length declaration. The CHARACTER key-
word can be abbreviated, i.e. this is a valid statement

DEFIN CHAR*12 Var1 Var2*36 Var3[16]

5.7.3 DEFINE COMMAND

[SIC\]DEFINE COMMAND NAME "Equivalent command" [Help_File]

Define a new user-defined SIC command.

By default, the new command will be part of the USER\ language. USER\
language is implicitely created if required without invoking DEFINE LAN-
GUAGE. If the command is prefixed by another user language, it will be
part of it. Attempting to add a command of a program language is an er-
ror.

Help_File is an optional argument indicating the name of the associated
help text to be used by the command HELP. The standard rules for help
syntax applies (see SIC documentation for details). If no help file is
provided, the one of the parent language will be used.

User defined commands are translated into their equivalent command at
execution time. They appear in the list of command displayed by HELP,
and can be abbreviated as normal "program-defined" commands. For example

DEFINE COMMAND INPUT "@ input.greg" pr:input_greg.hlp
define a new command USER\INPUT, which will execute procedure in-
put.greg.

5.7.4 DEFINE DOUBLE

[SIC\]DEFINE DOUBLE Var1[DIM1] [Var2[DIM2] [...]] [/GLOBAL]

DOUBLE variables can be multi-dimensional. Up to 7 dimensions can be
specified in the optional DIM field, with the following syntax:

Var[n1] or Var[n1,n2] etc... up to Var[n1,n2,n3,n4,n5,n6,n7]
where Var is the variable name and n1 to n7 are integer constants or
variables.

5 SIC LANGUAGE INTERNAL HELP 48

5.7.5 DEFINE FITS

[SIC\]DEFINE FITS Var File [index|T|B] [T|index|B] [index|T|B]
[/GLOBAL]

Define variables associated to the keywords and data of a FITS file.
The defined variables depend on the FITS file content. Both "basic" FITS
files and FITS extension (XTENSION) are handled.

An ’index’ value may be added to read only the ’index’-th extension.

With ’B’ code (stands for Basic): define only the basic keywords, not
proprietary keywords. In particular suppress HIERARCH keyword structure
present in ESO FITS headers.

The ’T’ code may be added to get all multidimensional arrays transposed
(depending on how the FITS file was written, sometimes the dimensionali-
ty of the SIC variables created from the FITS structure is not handy.
Using the transposition code can be a solution then).

For basic FITS data, the following variables are defined

VAR%NDIM Integer Number of dimensions
VAR%DIM Integer[4] Dimensions
VAR%CONVERT Double[3,4] Conversion formulae for the 4 axes:

Reference pixel,
Value at reference pixel,
Increment

VAR%DATA Real FITS data array
The variables are defined as part of a structure. GreG command LIMITS
/RGDATA A recognizes such a basic FITS structure in much the same way as
GILDAS images.

The DEFINE FITS command tries to define a SIC structure which contains
all FITS keywords, as well as all binary and ASCII tables located in
FITS extensions.

Support for Random groups (although this is an obsolescent FITS struc-
ture, it is still widely used) is also available.

DEFINE FITS only works to read FITS files, but not to create them.

5.7.6 DEFINE FUNCTION

[SIC\]DEFINE FUNCTION NAME(X,Y,Z) Expression(X,Y,Z)

Define an arithmetic user function of several variables. The maximum
number of variables is 4. The function definition can reference any of

5 SIC LANGUAGE INTERNAL HELP 49

the known mathematic operators and intrinsic or program defined func-
tions, but not previously defined user functions (i.e. user function
definition is not recursive).

5.7.7 DEFINE HEADER

[SIC\]DEFINE HEADER Var1 File1 Key1 [Var2 File2 Key2 [...]] [/GLOB-
AL]

Define variables associated to the HEADER of the GILDAS images located
in the specified files. The Keyword must be either READ or WRITE. The
following variables are defined:

VAR%GENE Integer Length of general section
VAR%NDIM Integer Number of dimensions (ReadOnly)
VAR%DIM Integer[4] Dimensions (ReadOnly)
VAR%CONVERT Double[3,4] Conversion formulae for the 4 axes:

Reference pixel,
Value at reference pixel,
Increment

VAR%BLAN Integer Length of blanking section
VAR%BLANK Real[2] Blanking and tolerance
VAR%EXTREMA Integer Length of extrema section
VAR%MAX Real Maximum
VAR%MIN Real Minimum
VAR%WHERE Integer[4,2] Position of max and min
VAR%DESC Integer Length of units and coordinate system secti
VAR%UNIT Char*12 Image unit
VAR%UNIT1 Char*12 First axis type
VAR%UNIT2 Char*12 Second axis type
VAR%UNIT3 Char*12 Third axis type
VAR%UNIT4 Char*12 Fourth axis type
VAR%SYSTEM Char*12 Coordinate system
VAR%POSI Integer Length of position section
VAR%SOURCE Char*12 Source name
VAR%RA Double Right Ascension
VAR%DEC Double Declination
VAR%LII Double Galactic longitude
VAR%BII Double Galactic latitude
VAR%EPOCH Real Epoch of coordinates
VAR%PROJ Integer Length of projection section
VAR%PTYPE Integer Projection type (code)
VAR%A0 Double First coordinate of projection center
VAR%D0 Double Second coordinate of projection center
VAR%ANGLE Double Position angle of projection
VAR%X_AXIS Integer First projected axis
VAR%Y_AXIS Integer Second projected axis
VAR%SPEC Integer Length of spectroscopy section

5 SIC LANGUAGE INTERNAL HELP 50

VAR%LINE Char*12 Line name
VAR%FREQRES Double Frequency resolution
VAR%FREQOFF Double Frequency offset
VAR%RESTFRE Double Rest Frequency
VAR%VELRES Real Velocity resolution
VAR%VELOFF Real Velocity offset
VAR%F_AXIS Integer Frequency/Velocity axis
VAR%BEAM Integer Length of beam section
VAR%MAJOR Real Major axis of beam
VAR%MINOR Real Minor axis of beam
VAR%PA Real Position angle of beam

where VAR is the specified variable name for the header. VAR becomes a
dummy variable of type header, which can only be referenced in a further
DELETE /VARIABLE command. The VAR%item variables are ReadOnly or Read-
Write according to the keyword Key, except for the dimension variables,
which cannot be modified.

5.7.8 DEFINE IMAGE

[SIC\]DEFINE IMAGE Var1 File1 Key1 [Var2 File2 Key2 [...]] [/GLOBAL]

Define variables associated to both the content and the header of the
GILDAS images located in the files, if specified. This command acts as a
combination of DEFINE HEADER and DEFINE TABLE. It accepts the same key-
words (KeyN) as DEFINE TABLE. If the keyword is READ, the header vari-
ables are mapped ReadOnly, otherwise they are mapped ReadWrite.

See HELP DEFINE HEADER for a description of the individual header vari-
ables.

5.7.9 DEFINE INTEGER

[SIC\]DEFINE INTEGER Var1[DIM1] [Var2[DIM2] [...]] [/GLOBAL]

INTEGER variables can be multi-dimensional. Up to 7 dimensions can be
specified in the optional DIM field, with the following syntax:

Var[n1] or Var[n1,n2] etc... up to Var[n1,n2,n3,n4,n5,n6,n7]
where Var is the variable name and n1 to n7 are integer constants or
variables.

5.7.10 DEFINE LANGUAGE

[SIC\]DEFINE LANGUAGE Name [Help_File]

Define a new user language. User languages can be filled with user com-
mands with DEFINE COMMAND. Their precedence against other languages is
set by default to Automatic, use SIC PRIORITY afterwards to change it.

5 SIC LANGUAGE INTERNAL HELP 51

If an help file is provided, the command HELP will look into this file
for the language help (see SIC documentation for details). Else it will
display a summary of all the language commands and their translations.

5.7.11 DEFINE LOGICAL

[SIC\]DEFINE LOGICAL Var1[DIM1] Var2[DIM2] [...] [/GLOBAL]

LOGICAL variables can be multi-dimensional. Up to 7 dimensions can be
specified in the optional DIM field, with the following syntax:

Var[n1] or Var[n1,n2] etc... up to Var[n1,n2,n3,n4,n5,n6,n7]
where Var is the variable name and n1 to n7 are integer constants or
variables.

5.7.12 DEFINE REAL

[SIC\]DEFINE REAL Var1[DIM1] [Var2[DIM2] [...]] [/GLOBAL]

REAL variables can be multi-dimensional. Up to 7 dimensions can be spec-
ified in the optional DIM field, with the following syntax:

Var[n1] or Var[n1,n2] etc... up to Var[n1,n2,n3,n4,n5,n6,n7]
where Var is the variable name and n1 to n7 are integer constants or
variables.

5.7.13 DEFINE STRUCTURE

[SIC\]DEFINE STRUCTURE Str [/GLOBAL]

Define a new structure name. Structure naming follows the Fortran-90
convention, i.e. Str%SubStr%SubStrElement. Structure elements (including
sub-structures if needed) can be defined using command

DEFINE REAL Str%Element
etc.

An entire structure and all its associated members is deleted by a sin-
gle command DELETE Str /VARIABLE.

5.7.14 DEFINE TABLE

[SIC\]DEFINE TABLE Var1 File1 Key1 [Var2 File2 Key2 [...]] [/GLOBAL]

Define variables associated to GILDAS images located in the files, if
specified. The variable type and dimensions are derived according to the
value of the keyword Key and the file content:
- READ or WRITE: use the type and dimensions from the file, and con-

nect the image in Readonly or ReadWrite access. The variable name
must not include any dimension field.

- DOUBLE, INTEGER or REAL: create a new table of the specified type.
The dimensions must then be specified in the dimension field of the

5 SIC LANGUAGE INTERNAL HELP 52

variable name, as for a standard variable. The associated file is
created, unless a star (’*’) is used as file name.

- EXTEND: take type and first dimensions from the file, but extend the
last dimension to the value specified in the dimension field. The
full syntax in this case is thus

DEFINE TABLE Var[Ldim] File EXTEND
where Ldim is the new value for the last dimension.

DEFINE TABLE does not create any additional variables for the image
header. See DEFINE IMAGE and DEFINE HEADER for this information.

5.7.15 DEFINE UVTABLE

[SIC\]DEFINE UVTABLE Var1 File1 Key1 [Var2 File2 Key2 [...]] [/GLOB-
AL]

Define variables associated to both the content and the header of the
GILDAS UV Table located in the specified files. The files must be UV Ta-
bles, a version of 2-D tables with some conventions for the interpreta-
tion of columns and an image-like header.

See HELP DEFINE HEADER for a description of the individual header vari-
ables.

5.7.16 DEFINE /GLOBAL

[SIC\]DEFINE Type Var1 [Var2 [...]] /GLOBAL

The /GLOBAL option specifies that the variables are global, instead of
being local to the current procedure. Local variables have precedence
over global variables.

The /GLOBAL option is incompatible with DEFINE FUNCTION and DEFINE COM-
MAND.

5.7.17 DEFINE /LIKE

[SIC\]DEFINE Type Var1 [Var2 [...]] /LIKE VarLike
[SIC\]DEFINE IMAGE Var1 File1 Key1 [...]] /LIKE VarLike
[SIC\]DEFINE STRUCTURE Struct1 [Struct2 [...]] /LIKE StructLike

The /LIKE option allows definition of Type REAL, LOGICAL, DOUBLE or IN-
TEGER arrays with dimensions identical to those of the (existing) Var-
Like array. IMAGEs and TABLEs can also be defined in this way. The di-
mension field must not be specified in such a case. /LIKE can also be
used in structures context: the new structure will be filled with a tree
identical to the StructLike one.

The /LIKE option is incompatible with DEFINE FUNCTION, DEFINE COMMAND,

5 SIC LANGUAGE INTERNAL HELP 53

as well as DEFINE HEADER and DEFINE FITS.

5.8 DELETE

[SIC\]DELETE /VARIABLE|/SYMBOL|/FUNCTION Name1 [Name2 [...]]

Delete specified variables, symbols or functions. For IMAGE variables,
also frees the corresponding file.

5.9 EDIT

[SIC\]EDIT [File_Name]

Without argument, EDIT dumps the Stack on a file named STACK.DEFEXT
where DEFEXT is the default macro extension specified by the program or
by the user using command SIC\SIC EXTENSION, and then calls a text edi-
tor to edit this file. If a file name is given, the specified file is
edited.

The editor to be chosen is defined by the logical name GAG_EDIT, which
you can define in your $HOME/.gag.dico file. Command SIC EDIT NewEditor
can also be used to re-define the choice of the editor.

5.10 ELSE

[SIC\]ELSE [IF Logical_expression [THEN]]

Conditional directive in an IF-END IF block. Similar to Fortran ELSE and
ELSEIF statements, but note that here the space between ELSE and IF is
compulsory, while the THEN keyword is optional. If the compulsory space
bothers you, just define the following symbol

SYMBOL ELSEIF "SIC\ELSE IF"

5.11 END

[SIC\]END Procedure|Help|Data|If

[SIC\]END IF

Mark the end of an IF block. Normal execution resumes. The symbol ENDIF
is defined as an abbreviation of SIC\END IF.

[SIC\]END Procedure|Help|Data

Terminate the definition of a new Procedure, Help file, or Data file.
See command BEGIN for details.

5 SIC LANGUAGE INTERNAL HELP 54

5.12 EXAMINE

[SIC\]EXAMINE [Name1] [Name2] [...] [NameN] [/GLOBAL] [/FUNCTION]
[/HEADER] [/ADDRESS] [/ALIAS]

List variables or functions.

If the /FUNCTION option is not present, EXAMINE without argument gives
the list of known variables with their respective types. Each variable
name is followed by its definition and the keywords "GBL" for GLOBAL
(interpreter level 0) variables, LCL(lev) for LOCAL variables at inter-
pretor level "lev" (viz., in a procedure), WR for READ/WRITE variables,
RD for READONLY variables.

With one or more arguments, EXAMINE will usually type the content of the
specified variables (local variables have priority). But:
- If the argument ends by the % character, it is assumed to indicate a

structure or an image header, and all associated header variables
are listed.

- Wildcarding is permitted: if the argument contains one or more "*"
character, all compatible variables names are listed.

- In any case, typing an ambiguous variable name will generate a list
of choices.

With the /FUNCTION option, lists the definition of the specified or all
(no command argument) user-defined functions.

With the /GLOBAL option, lists only the GLOBAL variables, as opposed to
LOCAL variables (i.e, in a loop or a macro)

With the /HEADER option, lists only the variables having an associated
header (i.e., the known images).

With the /ALIAS option, lists only the Aliases and their association.

The /ADDRESS option is used for debugging. It gives the internal vari-
able descriptor.

5.13 EXIT

[SIC\]EXIT

EXIT always ends SIC execution, at any level. In interactive sessions,
<^D> has the same behaviour as EXIT.

On the opposite <^Z> only ends the current level of execution, so that
when typed at the top level, <^Z> also ends the session. Note that <^Z>
may be trapped when interactive editing is enabled.

5 SIC LANGUAGE INTERNAL HELP 55

Note that end of SIC execution does not necessarily means end of program
execution: SIC may be entered again later by the calling program.

5.14 FOR

[SIC\]FOR Loop_Variable n1 n2 n3 TO n4 BY n5 n6 TO n7
or
[SIC\]FOR /WHILE Logical_Expression

Open a FOR-NEXT loop to be executed for values in the list (FOR Vari-
able), or until a logical expression becomes false (FOR /WHILE). The
last character of the prompt becomes a ’:’ instead of ’>’, and all sub-
sequent commands typed in until NEXT are the body of the loop. Up to
nine loops may be nested in any way. The index of the loop will be sub-
stituted to the loop variable Loop_Variable during loop execution. The
substitution occurs also within character strings if the loop variable
name is included between single quotes. Note that the index values may
be real.

[SIC\]FOR Loop_Variable n1 n2 n3 TO n4 BY n5 n6 TO n7

The loop specified in this example will execute for the following values
of the index :

n1
n2
n3, n3 + n5, n3 + 2 n5, n3 + 3 n5, ... , n4
n6, n6 + 1, n6 + 2, ... , n7

(assuming that n4-n3 is a multiple of n5, n7-n6 an integer). Loop vari-
ables are undefined outside the loop, and must not be previously de-
fined. Invalid ranges are ignored at execution time: e.g. in the previ-
ous example, the loop would not be executed for n3 TO n4 BY n5 if
n5*(n4-n3) < 0, but no error is signaled. Increments of 0 produce an er-
ror.

Conditional loops execute until the logical expression becomes false.
For example FOR /WHILE .TRUE. will execute forever.

5.15 HELP

[SIC\]HELP Name[\] [Subtopic]

Without an argument, HELP gives the list of available help. If the "\"
character is present, Name is assumed to be a language name, and HELP
gives a one line description of all commands specific to this language.
If the "\" is not present, Name is a command, and HELP gives more infor-
mation about it.

Two levels of Help are available. The subtopic may be a command option

5 SIC LANGUAGE INTERNAL HELP 56

(and a * to get information on all subtopics of the command).

5.16 IF

[SIC\]IF Logical_Expression [THEN]
[SIC\]IF Logical_Expression Command [Arguments]

The first form starts a conditional IF block. The behaviour of IF blocks
is similar to structured Fortran. The THEN keyword is optional.
The second form defines a logical IF statement, i.e. it uses a single
line with no possibility of alternate execution (no ELSE choice). When
the argument following the logical expression is not THEN, it is assumed
to be a command which will be interpreted, together with the next argu-
ments, if the logical expression evaluates as true.

This command can only be used within a procedure: interactive users are
expected to be able to make their decisions themselves.

There must be no blanks within the logical expression, but composite ex-
pressions are allowed. Two special logical functions can also be used:
- EXIST(VarName) Returns .TRUE. if VarName is an existing variable
- FILE("String") Returns .TRUE. if String is an existing file. Double

quotes protect the case of the string. Syntax FILE("’VarName’")
allows to check the string contained in a character variable.

5.17 IMPORT

[SIC\]IMPORT Package

Dynamically import a package (i.e. load its languages and perform its
initialization) in current scope. This allows to load another package
without closing (and loosing) the current session.

This feature is currently only available for: ASTRO, CLASS and MAPPING.

5.18 LET

[SIC\]LET Variable [=] [Expression]
[SIC\]LET Variable [=] Expression /NEW Type [Attr]
[SIC\]LET Variable [=] Expression /WHERE Condition_mask
[SIC\]LET Variable [=] Expression /PROMPT "Explanatory text"
[SIC\]LET Variable [=] Expression /RANGE Min Max
[SIC\]LET Variable [=] Expression /CHOICE Value_1 ... Value_n
[SIC\]LET Variable [=] Expression /INDEX Value_1 ... Value_n
[SIC\]LET Variable [=] Expression /FILE Filter
[SIC\]LET Variable [=] Expression /SEXAGESIMAL
[SIC\]LET Variable [=] Expression /LOWER
[SIC\]LET Variable [=] Expression /UPPER
[SIC\]LET Variable [=] Expression /FORMAT format_string

5 SIC LANGUAGE INTERNAL HELP 57

[SIC\]LET Variable [=] Expression /FORMULA
[SIC\]LET Variable [=] OldVariable /REPLACE
[SIC\]LET Variable /STATUS Read|Write

Assign a value to a variable. The variable must already be defined (see
DEFINE) unless the /NEW option is present. Logical expression results
cannot be assigned to non logical variables, and vice versa. All numeri-
cal expression evaluations are done in double precision, and automati-
cally converted to the type of (numerical) variable assigned.

The equal sign may be always omitted EXCEPT when using Free Syntax (see
below).

If no value is assigned to the Variable, the user will be prompted for
the variable value. The Prompt text can be defined with the /PROMPT Op-
tion.

VECTOR OPERATION:

Operations are vectorial, i.e. a full array is computed at the same
time. The variable name can define a subset of an known array, such as:

DEFINE REAL A[4,5,6] B[4]
LET A[,,3] = 1.0 ! or equivalently LET A[3] = 1.0
LET A[,2,2] = B ! or equivalently LET A[2,2] = B

These commands assign the value 1.0 to A[i,j,3], with i running from 1
to 4 and j from 1 to 5, and B[k] to A[k,2,2] for k from 1 to 4. Implic-
it transposition is now allowed, though still somewhat experimental:
both A[,2,3] and A[2,,3] are valid. A range of indexes can be specified
rather than one index: for the above example A[3:5] is a valid 4x5x3 ar-
ray, A[2:4,,] is a 3x5x6 array.

IMPLICIT LOOPS:

In addition to vector computing, it is possible to assign an array using
"implicit loops", i.e. functions of the array indices such as

DEFINE REAL A[4,5]
LET A[I,J] = (I-J)**2

Implicit loops cannot be mixed with variable index values.

CONDITION MASK (/WHERE option):

Vector assignment can be done only where a specified logical array (or
logical array expression) is true, using the /WHERE option. See HELP LET
/WHERE.

FREE SYNTAX:

5 SIC LANGUAGE INTERNAL HELP 58

The LET command may be omitted if no option is present, and is the SIC
syntax is set to FREE. In case of conflict between a variable name and a
(complete) command name, an error message is issued. See SIC command.

GUI (Graphic-User-Interface) input mode:

If command GUI\PANEL has been issued before, the LET command defines
widgets in the master window defined by GUI\PANEL. The widget is a sim-
ple prompt when option /PROMPT is set, a slider if option /RANGE is
present, a list of choices if option /CHOICE or /INDEX is given, and a
selection of files with the specified filter when option /FILE is speci-
fied. If neither of these options is present, the LET command works in
the usual way.

The widgets are created and activated by command GUI\GO. Standard input
can be used, and pressing button GO will define all the variables as
specified. If button ABORT is pressed instead, none of the variables are
modified and an error is returned. Error handling is available.

5.18.1 LET /CHOICE

[SIC\]LET Variable [= Expression] /CHOICE Value_1 Value_2 ... Val-
ue_n

(GUI input mode)

Activate a choice widget which will return a value among the specified
list. The widget will be created by command GUI\GO. If the last speci-
fied value is an asterisk, any value is also valid.

5.18.2 LET /FILE

[SIC\]LET Variable [= Expression] /FILE Filter
(GUI input mode)

Activate a "file" widget to select a file according to the specified
filter. The widget will be created by command GUI\GO.

5.18.3 LET /FORMAT

[SIC\]LET Variable [=] Expression /FORMAT format_string

Use the specified format to convert the expression into a character
string and assign it to the requested (character) variable. For example:
define character c*6
LET C acos(-1.0) /FORMAT F6.3
exa c
c = 3.142

5 SIC LANGUAGE INTERNAL HELP 59

5.18.4 LET /FORMULA

[SIC\]LET Variable [=] Expression /FORMULA [/other_option]
(GUI input mode)

Use Expression as a formula in GUI input mode, rather than only the val-
ue of the expression.

5.18.5 LET /INDEX

[SIC\]LET Variable [= Expression] /INDEX Text_1 Text_2 ... Text_n
(GUI input mode)

Activate a choice widget which will return an integer value correspond-
ing to the index of the selected text among the specified list. The wid-
get will be created by command GUI\GO.

5.18.6 LET /LOWER

[SIC\]LET Variable [=] Expression /LOWER

Convert the output to lower case prior to assignment. To convert a vari-
able, use e.g. for variable C

let c ’c’ /lower

5.18.7 LET /NEW

[SIC\]LET Variable [=] Expression /NEW Type [Attr]

Define the variable and assign it at the same time. Type is the type of
the variable (REAL, INTEGER, DOUBLE for double precision, or LOGICAL).
The Attr argument is used to specify whether the newly created variable
is LOCAL (default) or GLOBAL. See also the SIC\DEFINE command.

5.18.8 LET /PROMPT

[SIC\]LET Variable [=] [Expression] /PROMPT "Explanatory text"
(GUI input mode)

Create a text widget, with a specified prompt, to return a value or
valid expression for the variable. The text widget can be pre-loaded
with an expression or value(s). Standard input will be available once
the widget is created by command GUI\GO.

5.18.9 LET /RANGE

[SIC\]LET Variable [=] [Expression] /RANGE Min Max
(GUI input mode)

Activate a slider widget to return a value within the specified range.

5 SIC LANGUAGE INTERNAL HELP 60

The widget will be created by command GUI\GO.

5.18.10 LET /REPLACE

[SIC\]LET NewVariable [=] OldVariable /REPLACE

Replace OldVariable by NewVariable. The content and location of the
variable remains unchanged: only the name is modified.

5.18.11 LET /SEXAGESIMAL

[SIC\]LET Numeric [=] [+|-]DD[:MM[:SS.SS]] /SEXAGESIMAL [D|H|R]
[D|H|R]

[SIC\]LET String [=] Value /SEXAGESIMAL [D|H|R] [D|H|R]

The /SEXAGESIMAL option allows to use sexagesimal expressions in assign-
ments. This option is only valid for scalar variables. Units of the
operands can be provided by optional characters chosen in D)egrees,
H)ours or R)adians. The first unit is for the output, the second for the
input. Radians are an invalid unit for the sexagesimal string. Degrees
are assumed by default for both operands.

The first form converts the sexagesimal expression into a numerical val-
ue stored in the assigned variable. Mathematical expressions can be used
for each elements, provided they are separated by a semicolon.

The second form converts a numerical value into the sexagesimal notation
stored in the assigned character variable.

5.18.12 LET /STATUS

[SIC\]LET Variable /STATUS Read|Write

Modify a variable status to/from ReadOnly from/to Writeable.

5.18.13 LET /UPPER

[SIC\]LET Variable [=] Expression /UPPER

Convert the output to upper case prior to assignment. To convert a vari-
able, use e.g. for variable C

let c ’c’ /upper

5.18.14 LET /WHERE

[SIC\]LET Variable = Expression /WHERE Condition_mask

The LET command allows setting variables only where a given condition
mask is .TRUE.. The condition mask can be a logical array or a logical

5 SIC LANGUAGE INTERNAL HELP 61

expression (of same dimension as the result variable). Implicit loops
can be used in conjunction to the /WHERE option.

For example
DEFINE REAL A[4,5] B[4,5]
LET B[I,J] = I+J
LET A[I,J] = (I-J)**2 /WHERE COS(I).GT.SIN(J) ! 1
LET A[I,J] = SIN(I+J) /WHERE B.GT.5 ! 2

is equivalent (in terms of results, but about 500 times faster) to the
loops

DEFINE REAL A[4,5] B[4,5]
LET B[I,J] = I+J

! 1
FOR J 1 to 5

FOR I 1 to 4
IF (COS(I).GT.SIN(J)) THEN

LET A[I,J] = (I-J)**2
ENDIF

NEXT
NEXT

! 2
FOR J 1 to 5

FOR I 1 to 4
IF (B[I,J].GT.5) THEN

LET A[I,J] = SIN(I+J)
ENDIF

NEXT
NEXT

Note in the example above that implicit variables can be used. However,
the following syntax is non valid,

LET A[I,J] = SIN(I+J) /WHERE B[I,J].GT.5
because implicit variables cannot appear as indexes to an operand array
(B), but only as indexes to the result array (A) or as variables as in
SIN(I+J). The correct syntax would be

LET A[I,J] = SIN(I+J) /WHERE B.GT.5
The following syntax is also non valid

LET A = B /WHERE B[I,J].GT.LOG(I+J)
because implicit variables cannot be defined by an operand array (B),
but only by the result array. The correct syntax would be

LET A[I,J] = B /WHERE B.GT.LOG(I+J)

5.19 MESSAGE

[SIC\]MESSAGE Severity ProcedureName "Message"
[SIC\]MESSAGE Severity ProcedureName Arg1 Arg2 ... ArgN [/FORMAT

Fmt1 Fmt2 ... FmtN]

5 SIC LANGUAGE INTERNAL HELP 62

Print a message using the same mechanism as the one used by Gildas pro-
grams. In particular, it will be printed or not, to the terminal and/or
to the message file, depending on the filters that currently apply to
messages.
- The severity must be a single letter from one of the following:
F)atal, E)rror, W)arning, R)esult, I)nfo, D)ebug, T)race, C)ommand,
U)nknown.

- The procedure name is a free character string.
- The message must have at least one component. Multiple remaining argu-
ments will be printed out spaced by a single space. Enclose with dou-
ble-quote a character string if you want to use more than one space.

- If /FORMAT option is invoked, each argument is displayed using its as-
sociated format. Formats are Fortran ones (so may be slightly machine-
dependent) like a10, i2, f5.2 and so on.

Example:
SIC> MESSAGE I FOO "Hello world!"
I-FOO, Hello world!

For more information on message filters, see the HELP for the SIC MES-
SAGE command.

5.20 MFIT

[SIC\]MFIT Yvar=Func(Xvar,&A,&B,...) [/START A1 B1 ...] [/STEP A2 B2
...] [/EPSILON e] [/WEIGHTS w] [/METHOD m] [/QUIET]

or
[SIC\]MFIT Filename [/START A1 B1 ...] [/STEP A2 B2 ...] [/EPSILON

e] [/WEIGHTS w] [/METHOD m] [/QUIET]

Perform a least squares fit using the specified Method. The least square
fit tries to adjust function Func of variable Xvar and parameters &A,
&B, ... to match variable Yvar.

Any function or combination of functions known by SIC may be used.
Blanks are supported in the formula. The ’=’ sign is required.

Fit parameter DUMMY names are &A...&Z . Already defined SIC variables
may be used in the formula as long as they don’t match the variables
used by MFIT. The resulting parameters will be stored in the structure
variable MFIT%. An array with weights may be given by option /WEIGHTS.
It must match the dimension of the formula result (defaulted to uniform
weight).

The formula can also be provided by a disk file (default extension
.GRF), where lines beginning with an exclamation mark are treated as
comments. Inside the file, blanks can be used in the formula, which may
be spread over several lines.

5 SIC LANGUAGE INTERNAL HELP 63

The command MFIT defines the following global SIC variables to hold its
results:

MFIT%PAR : Fit parameters
MFIT%ERRORS : The parameter errors, if they have been computed
MFIT%MATH : Text string containing the formula with replaced dummies
MFIT%FIT : Found approximation (the application of MFIT%MATH)
MFIT%RES : Residuals (i.e. Yvar-MFIT%FIT)
MFIT%STATUS : .FALSE. on successful completion.

Suppose you read X,Y=f(X) and Z (errorbar on Y) in the 3 arrays X, Y and
Z. You could change Z into weights (for example SIC\LET Z 1|Z^2), then
fit a cubic polynomial regression in variables X,Y by typing:

MFIT Y=(&A*X^3+&B*X^2+&C*X+&D) /WEIGHTS Z
The MFIT command will print the used formula:

I-MFIT, Formula (stored in variable MFIT%MATH) :
(MFIT%PAR[01]*X^3+MFIT%PAR[02]*X^2+MFIT%PAR[03]*X+MFIT%PAR[04])

The array MFIT%PAR will contain MFIT%PAR[1]=value of ’&A’, and so on...
to be used afterwards.

5.20.1 MFIT /EPSILON

This option is used to specify the desired tolerance. Its interpre-
tation is method dependent. For SIMPLEX and POWELL, it means the rela-
tive deviation of the mean squared difference of two fit iterations. For
SLATEC, which uses non-reduced chi-2, it is the absolute difference be-
tween two iterations. For ANNEAL, its interpretation is totally differ-
ent.

Use default value 0 to let the program guess. In subtle cases, or to
gain speed in case a coarse result is desired, use values around 1D-5
for SIMPLEX and POWELL, and of order 1 for SLATEC. For ANNEAL, see de-
tails in the /METHOD option.

Note that this is not the absolute error of the fit parameters.

5.20.2 MFIT /METHOD

ANNEAL Simulated annealing technique. This may require a very large
number of function evaluation.

POWELL Gradient using the Powell method (see Press et al. for de-
tails).

SIMPLEX Classical Simplex amoeba search
ROBUST A combination of Simplex + Slatec, to be used with large ini-

tial steps.
SLATEC Modified Levenberg Marquardt method with adaptive steps, as

implement in the Slatec library.

5 SIC LANGUAGE INTERNAL HELP 64

All methods require a proper choice of initial values and steps. The AN-
NEAL method is much more robust against poor guesses, but may require 10
to 100 times more function evaluations than any other.

5.20.3 MFIT /QUIET

Require MFIT to be silent (useful to avoid too many messages in
loops).

5.20.4 MFIT /START

[SIC\]MFIT Y=f(X,&a,...) /START A1 B1 ...

A1 B1 ... are used to pass starting guesses for the parameters &A &B
(defaulted to 1.0). The starting values should not be too far from a po-
tential solution, otherwise the convergence may not be possible.

5.20.5 MFIT /STEP

[SIC\]MFIT Y=f(X,&a,...) /STEP A2 B2 ...

A2 B2 ... are used to pass the unity vectors (steps) for the iteration
on parameters &A &B (defaulted to 0.1). Poor choice of initial steps may
lead to non convergence. Too small steps will not help converging when
one starts too far from the solution. Too large steps may lead to incor-
rect evaluation of the parameter errors. The optimal step for the deter-
mination of the errors is about the error bar, so that all parameters
become dimensionless.

5.21 NEXT

[SIC\]NEXT

Depending on the context, NEXT has one of two possible interpretations:
- If typed during loop definition, NEXT indicates the end of the defi-

nition and starts the execution.
- If encountered during loop execution, NEXT will skip all instruc-

tions remaining in the Loop Buffer and resumes the Loop execution at
its first line for the next value of the index. This typically oc-
curs as an error recovery (ON ERROR NEXT).

The commands will be echoed to the terminal if the VERIFY switch is ON.

5.22 ON

[SIC\]ON Status [Command]

Perform the Command when Status in encoutered. Only the ON ERROR case is

5 SIC LANGUAGE INTERNAL HELP 65

available. See subtopic ERROR for details.

5.22.1 ON ERROR

[SIC\]ON ERROR [Command]

This command changes the current error recovery action. By default, a
PAUSE is automatically generated by any error during execution.

This can be changed and any other valid command line Command can be ac-
tivated instead of PAUSE when an error occurs, using the command ON ER-
ROR Command. A very useful error recovery command for loops is NEXT,
which enables skipping the remaining commands of the loop when something
went wrong, and resumes the loop at for the following index value.

Note that the ON ERROR command does not affect the behaviour on <^C>
trapping, which always returns a PAUSE. The ON ERROR command is only
valid within the procedure which declared it.

5.23 PARSE

[SIC\]PARSE [/OptionName1] ... [/OptionNameN]

Parse the array PRO%ARG in order to mimic the options mechanism provided
by a standard command.

When a procedure is executed, the array PRO%ARG is filled with the argu-
ments passed to the procedure. If you invoke the command PARSE with some
option names, it will parse the arguments to gather them by options and
option arguments into the structure PRO%PARSE%.

For example, if you invoke your procedure like this:

SIC> @ myprocedure 123 /MYOPTION "ABC"

the PRO%ARG array will contain
SIC_3> EXA PRO%ARG
PRO%ARG is a character*256 Array of dimensions 3
123
/MYOPTION
ABC

Invoking the command PARSE in your procedure e.g.
SIC_3> PARSE /MYOPTION /OTHEROPTION

will gather the command and the 2 option arguments like this:
SIC_3> EXA PRO%PARSE%
PRO%PARSE% ! Structure GLOBAL

5 SIC LANGUAGE INTERNAL HELP 66

PRO%PARSE%COMMAND ! Structure GLOBAL
PRO%PARSE%COMMAND%NARG = 1 ! Integer GLOBAL RO
PRO%PARSE%COMMAND%ARG is a character*256 Array of dimensions 1
PRO%PARSE%MYOPTION ! Structure GLOBAL
PRO%PARSE%MYOPTION%NARG = 1 ! Integer GLOBAL RO
PRO%PARSE%MYOPTION%ARG is a character*256 Array of dimensions 1
PRO%PARSE%OTHEROPTION ! Structure GLOBAL
PRO%PARSE%OTHEROPTION%NARG = -1 ! Integer GLOBAL RO

Namely: the command was passed 1 argument (available in the associated
ARG array), the option MYOPTION was passed 1 argument, and the option
OTHEROPTION was absent (NARG=-1). An option is present if NARG>=0.

5.24 PAUSE

[SIC\]PAUSE "Message"

Set a break point in a Loop or a Macro. PAUSE returns control to user
when executed in a macro. The prompt is changed to indicate the execu-
tion level. Any valid command can be executed while in interrupt mode.
The execution can be resumed by typing CONTINUE, aborted by QUIT (or RE-
TURN, depending whether an error status is desired). NEXT may also be
used for the Loop.

If PAUSE is followed by an argument, this argument is typed when the
pause occurs. When typed in interactive, PAUSE generates a traceback of
the levels of execution in SIC.

A pause is generated after completion of the current command if you type
<^C> on the keyboard. This allows you to interrupt any sequence of com-
mands (even if ON ERROR CONTINUE has been typed).

5.25 PYTHON

[SIC\]PYTHON
[SIC\]PYTHON PythonCommandLine
[SIC\]PYTHON PythonScript.py

Any form of the PYTHON command starts the Python interpreter and inter-
communication between SIC and Python at first call. Subsequent call do
not repeat this initialization step.

Three main interaction schemes are available:
- Without argument, the user is exposed to the PYTHON prompt.

- With a Python command line as argument (any string following the
command), the command is transparently executed and the user recover

5 SIC LANGUAGE INTERNAL HELP 67

the SIC prompt. Arguments starting with a slash (/) should be pro-
tected by double-quotes: this avoids SIC to interpret it as a com-
mand option. Remember also that Python is case sensitive and the
string should take care of this. For example:

SIC> PYTHON print "Hello world!"
Hello world!
SIC> PYTHON def f(x): return x*x
SIC> PYTHON print f(2)
4
SIC>

- With a PythonScript.py as first argument (i.e. ending with ".py"),
the Python script is executed and then the user recover the SIC
prompt. Arguments following the script name can be recovered in the
sys.argv Python list. These arguments are interpreted by SIC before
being sent to the script. For example:

SIC> TYPE show_args.py
import sys
for i in sys.argv:
print i, type(i)

SIC>
SIC> PYTHON show_args.py PI ’PI’ 1.234
showrgs.py <type ’str’>
PI <type ’str’>
3.1415926535898 <type ’str’>
1.234 <type ’str’>
SIC>

5.26 QUIT

[SIC\]QUIT [ALL]

When typed after a pause, QUIT aborts the execution of the interrupted
level. QUIT returns an error to the previous level to signal this anoma-
lous end. The previous level is then also interrupted to allow a com-
plete error recovery. Note that this behaviour depends on the ON ERROR
command. QUIT can also be used to abort FOR-NEXT loop compilation.

If argument ALL is present, all nested procedures are aborted, and SIC
goes back to base level.

In interactive sessions, QUIT should be used instead of BREAK and RETURN
because it allows extra decision at run time. QUIT used as the error re-
covery command is equivalent to RETURN ERROR.

5.27 RECALL

[SIC\]RECALL [Arg]

5 SIC LANGUAGE INTERNAL HELP 68

This command retrieves command lines from the stack. The retrieved line
is edited if possible or immediately executed if not. If no argument is
present, the last command line is retrieved. If the argument is a num-
ber, the specified command is retrieved. If it is a character string,
the first (most recently entered) command which begins by this string is
recalled (in this case, the string may include a full language name or
no language at all).

When line editing is possible, commands can also be retrieved using the
Up arrow (or ^P) to recover the previous command, and Down arrow (or ^N)
to recover the next command.

If no line editing is available, you are prompted whether to execute or
not the recalled command.

5.28 RETURN

[SIC\]RETURN [BASE|ERROR]

End a procedure execution, transmitting or not an error if argument ER-
ROR is present.

If argument BASE is present, RETURN will end all nested procedures, and
give back control to base level, without transmitting any error.

5.29 SAY

[SIC\]SAY ["Text"] [’Expression’] [’Variable’] [/FORMAT ...]

Display strings or character variable or implicitly formatted arithmetic
(or logical) expressions in the shortest possible format, unless the
/FORMAT option is used. By default, SAY writes its output text both on
the current output and on the file opened by command SIC\SIC OUTPUT.

In GUI mode (see command GUI\PANEL), SAY writes the text in the current
window. SAY without parameters inserts a separator.

5.29.1 SAY /FORMAT

[SIC\]SAY Arg1 Arg2 [... ArgN] /FORMAT fmt1 fmt2 [...fmtn]

where fmt1 applies to Arg1, and so on. The format used is a Fortran for-
mat (so it may be slightly machine-dependent). Use formats like a10, i2,
f5.2, and so on.

5.30 SIC

[SIC\]SIC Arg1 Arg2 [... ArgN]

5 SIC LANGUAGE INTERNAL HELP 69

The SIC command has 3 categories of actions:

(1) File Handling actions:
These are used to manipulate files in a system independent ways from SIC
procedures.

SIC APPEND File FileAppended
SIC COPY FileOld FileNew
SIC DELETE File
SIC DIRECTORY Directory
SIC EXPAND Infilename Outfilename
SIC FIND FileFilter
SIC MKDIR New_Directory
SIC MODIFIED FileName StrName
SIC OUTPUT FileNew
SIC RENAME FileOld FileNew
SIC SAVE FileNew Command
SIC SEARCH File (Obsolescent)

(2) SIC status actions:
These are used to toggle some mode of the SIC monitor, or control some
SIC monitor parameter. When called with no further argument, the status
of the item will be displayed.

SIC EDIT
SIC ERROR
SIC EXTENSION MacroExtension
SIC HELP HelpMode
SIC INTEGER SHORT|LONG
SIC LOGICAL LogName [Translation]
SIC Language\ [Status]
SIC MACRO MacroPath
SIC MEMORY
SIC MESSAGE
SIC PRECISION
SIC PRIORITY [Level Language]
SIC RANDOM_SEED
SIC SYNTAX
SIC SYSTEM
SIC TIMER
SIC VERIFY
SIC VERSION
SIC WHICH
SIC WINDOW

(3) Miscellaneous actions:
These execute some system actions, or return some system information.

SIC BEEP [N]

5 SIC LANGUAGE INTERNAL HELP 70

SIC CPU
SIC DATE
SIC DEBUG
SIC LOCK LockFile
SIC USER
SIC WAIT Seconds
SIC DELAY [Seconds]
SIC FLUSH

5.30.1 SIC APPEND

[SIC\]SIC APPEND FirstFile FileAppended

Append file "FirstFile" to file "FileAppended". It is equivalent to Unix
command

cat FirstFile >> FileAppended
but system independent.

5.30.2 SIC BEEP

[SIC\]SIC BEEP [N]

Will beep 1 or N times.

5.30.3 SIC CPU

[SIC\]SIC CPU

Will return the User CPU and System CPU times in real variables USER and
SYSTEM resp. These variables are holded by two structures SIC%CPU%RAW%
and SIC%CPU%CUMUL% which record times since last and first calls of
SIC CPU resp. These structures also provide elapsed time in variables
ELAPSED.

5.30.4 SIC DATE

[SIC\]SIC DATE

Will return the current date and time in symbol SYS_DATE.

5.30.5 SIC DEBUG

[SIC\]SIC DEBUG LUN [Number]
[SIC\]SIC DEBUG IMAGE [Number]
[SIC\]SIC DEBUG MEMALIGN
[SIC\]SIC DEBUG MESSAGE
[SIC\]SIC DEBUG GFORTRAN
[SIC\]SIC DEBUG RESOURCES
[SIC\]SIC DEBUG PYTHON

5 SIC LANGUAGE INTERNAL HELP 71

[SIC\]SIC DEBUG VARIABLES

Debugging command.

The first two keywords LUN and IMAGE print the status of reserved Logi-
cal UNit numbers (LUN), or of allocated image slots (IMAGE).

The MEMALIGN keyword will check if dynamically allocated buffers are
aligned on 4, 8, 16 and 32 bytes. Some applications (e.g. FFTW3) are
more or less faster dependending on the buffer alignment in memory.

The MESSAGE keyword swaps ON or OFF the debugging mode for messages.
When turning it ON, all messages to both screen and message files are
enabled. In this case it is a shortcut of the commands:

SIC MESSAGE GLOBAL ON
SIC MESSAGE GLOBAL A=FEWRIDTCU

When turning it OFF, standard message filters (maybe customized by user)
are re-enabled. It is a shortcut of the command:

SIC MESSAGE GLOBAL OFF
Default is debug mode turned OFF, unless a ’-d’ option has been provided
when invoking the Gildas executable.

The GFORTRAN keyword will check if the program is able to read and write
correctly Gildas binary files. Some versions of the Gfortran compiler
have an issue on this point, this command is intended to give a clear
status to the user.

The RESOURCES keyword will display current resource usage and limits
(memory, files, etc). See man pages for getrusage and getrlimit for de-
tails (Linux only).

The PYTHON keyword will display the Python version which was used to
compile Gildas against the one used at run time. If they are different,
this probably means troubles.

The VARIABLES keyword will display a technical list of the variables de-
fined in Sic.

5.30.6 SIC COPY

[SIC\]SIC COPY FileOld FileNew

Copy FileOld to FileNew. It is equivalent to Unix command
cp FileOld FileNew

but system independent.

5 SIC LANGUAGE INTERNAL HELP 72

5.30.7 SIC DELAY

[SIC\]SIC DELAY Seconds
[SIC\]SIC DELAY

Delay the execution of commands. SIC DELAY is used in two times. The
first call is given a duration as argument. Added to the current date
and time, this defines a virtual milestone in the future. The next call
without argument will wait for this milestone if it has not been reached
yet, or will return without waiting if the limit is already past. During
the waiting time, CTRL-C can be used to exit the command.

An application of SIC DELAY is to slow down the execution of loops which
display or draw useful informations to the user. In the example below,
we ensure that the loops are executed every second (or more), instead of
depending on the CPU speed which varies over machines and epochs:

FOR I 1 to 10
SIC DELAY 1.0
Do something
SIC DELAY

NEXT

5.30.8 SIC DELETE

[SIC\]SIC DELETE File

Delete the specified file. It is equivalent to Unix command
rm File

but system independent.

5.30.9 SIC DIRECTORY

[SIC\]SIC DIRECTORY Directory

Change the working directory to the specified name. It is equivalent to
Unix command

cd Directory
but system independent.

5.30.10 SIC EDIT

[SIC\]SIC EDIT [ON|OFF|EditorName]

List or change the status of the command line editing mode, or the de-
fault text editor used by command EDIT.

5.30.11 SIC ERROR

[SIC\]SIC ERROR

5 SIC LANGUAGE INTERNAL HELP 73

List the current error recovery command, defined by command ON ERROR.

5.30.12 SIC EXPAND

[SIC\]SIC EXPAND InFileName OutFileName

Add the language name before each command of the macro file InFileName
and write the results into the new macro file OutFileName. This command
should be used in a program where the InFileName macro does not produce
any command name ambiguity. The resulting macro file will then be usable
in any program.

The symbols are not touched because some procedures may need to redefine
symbols on the fly.

Right now the SIC commands are not transformed because it would cause
trouble to the procedure structure if some commands like FOR, IF, etc...
would be changed.

5.30.13 SIC EXTENSION

[SIC\]SIC EXTENSION [Extension1 ... ExtensionN]

Without arguments, print the list of extensions used by commands @ and
EDIT, with precedence given from the left to the right. Defaults are
program dependent: for all Gildas softwares, it is the program name,
while many user created applications use the generic default extension
".pro".

With one or more arguments, add the input extension(s) at the beginning
of the list, i.e. with highest precedence. If extension was already
known, SIC EXTENSION also brings it back at the beginning.

5.30.14 SIC FIND

[SIC\]SIC FIND [FileFilter [Directory]]

Search for all files matching the specified FileFilter in the specified
Directory. Matching files are returned in a SIC structure named DIR%.
DIR%NFILE is the number of found files, and DIR%FILE[1:dirnfile] a char-
acter array containing the filenames.

The FileFilter can contain a directory name. In this case the returned
file names will include it. On the contrary, if the FileFilter does not
contain a directory name, and a "Directory" argument is specified, the
returned names will not contain the Directory name.

The default file filter is *.*

5 SIC LANGUAGE INTERNAL HELP 74

5.30.15 SIC FLUSH

[SIC\]SIC FLUSH

Flush message and log files buffers onto disk.

5.30.16 SIC HELP

[SIC\]SIC HELP [PAGE|SCROLL|INDEX|CONTENT|HTML]

With no argument, print how the HELP command behaves. Otherwise, con-
trols whether it outputs the text page by page (PAGE), or continuously
(SCROLL).

- SIC HELP INDEX indicates the HELP command should display the page
referenced first in the index of the PostScript documentation.

- SIC HELP CONTENT indicates the HELP command should display the page
referenced first in the table of contents from the PostScript docu-
mentation. The last two options use the GhostView facility on X-Win-
dow terminals.

- SIC HELP HTML indicates the HELP command should refer the HTML
version of the documentation and use the appropriate browser to dis-
play it.

5.30.17 SIC INTEGER

[SIC\]SIC INTEGER [SHORT|LONG]

Define the default SIC integer kind (i.e. used by DEFINE INTEGER). SHORT
refers to Fortran’s INTEGER*4 (with a limit value of 2**31-1) while LONG
refers to INTEGER*8 (with a limit value of 2**63-1). Default is SHORT.

Without argument, the command displays the current default SIC integer
kind.

5.30.18 SIC LANGUAGE

[SIC\]SIC Language\ [ON|OFF]

Place a language in the active scope, or removes it, or list its status.
Languages not in active scope are not searched for their commands, un-
less the language name is explicitly given.

5.30.19 SIC LOCK

[SIC\]SIC LOCK [LockFile]

With no argument, display the list of lock files owned by the current
program session. With a file name as argument, create this file as a

5 SIC LANGUAGE INTERNAL HELP 75

lock file. Attempting to create a lock file which already exists is a
fatal error. Lock files owned by the current program session are im-
plicitely deleted when exiting.

This command is intended to protect some user’s resources, e.g. invoking
it in a procedure ensures that this procedure can not be run twice in
the same or in another session.

5.30.20 SIC LOGICAL

[SIC\]SIC LOGICAL LogName Translation
[SIC\]SIC LOGICAL LogName
[SIC\]SIC LOGICAL [Pattern]

The first syntax sets or replaces a logical name.

SIC LOG LogName will give the translation of that precise logical name.

Finally, SIC LOG Pattern will search for all logical names matching the
pattern. A wilcard ’*’ means 0 or more characters. Without second argu-
ment the pattern ’*’ is used, i.e. it will list all the logical names.

5.30.21 SIC MACRO

[SIC\]SIC MACRO MacroPath

Change the search path for the procedures. Procedures executed by @ are
searched in a path specified by the special logical name MACRO#DIR: .
This command allows to list or change the content of MACRO#DIR: .

5.30.22 SIC MEMORY

[SIC\]SIC MEMORY [ON|OFF]

Enable or disable automatic insertion of successful commands into the
stack.

5.30.23 SIC MESSAGE

[SIC\]SIC MESSAGE
[SIC\]SIC MESSAGE Pack1 [[[S|L|A]-|=|+]F|E|W|R|I|D|T|C|U] [PackN...]
[SIC\]SIC MESSAGE Global [[[S|L|A]-|=|+]F|E|W|R|I|D|T|C|U] [ON|OFF]
[SIC\]SIC MESSAGE * [[[S|L|A]-|=|+]F|E|W|R|I|D|T|C|U] [PackN...]

Modify and display the messaging filters for one or more packages. Mes-
sages are usually printed on screen and into a message file in the
GAG_LOG: directory. Depending on its kind (from trace to fatal errors),
a message may be printed or not to one of these outputs. Messaging fil-
ters allow the user to fine tune the kinds of messages he wants to see.

5 SIC LANGUAGE INTERNAL HELP 76

Filters are either global (i.e. all the messages are filtered whathever
the package they belong to) or package-dependent (i.e. the messages are
filtered depending on the package they belong to).

The command SIC MESSAGE,
- without argument, outputs the messaging filters for all active pack-

ages;
- with one or more package name as arguments, displays the associated

filters, e.g. :
GREG> SIC MESSAGE SIC GLOBAL
sic on-screen active filter: FEWRI---U
sic to-mesfile active filter: FEWRIDTCU
global on-screen inactive filter: FE-------
global to-mesfile inactive filter: FEWRIDTCU

First column shows the package name, second column the output de-
vice, third column the filter status, last column the associated
filter;

- with a package name followed by a messaging rule (see below), up-
dates its the filter value and displays it. The filters of several
packages can be changed on the same command line, e.g. SIC MESSAGE
SIC S+D GREG L-W

The package name can additionally have two special values:
- * : all the package filters are modified according to a single input

rule;
- GLOBAL : set a global filter which can override all the package fil-

ters without loosing them. This global behavior is activated and de-
activated by the ON or OFF keyword.

A rule to change a filter is a single string composed of three parts,
from left to right:
- A, S and/or L as first argument to modify All, Screen, or Logfile

filters. This must be unique but is optional, default is Screen on-
ly.

- +, - or = as second argument to add to, remove from, or redefine
filter values. This operator must be unique, and it is optional: de-
fault is +.

- F, E, W, R, I, D, T, C and/or U as last argument(s) to modify the
filters on Fatal, Error, Warning, Result, Info, Debug, Trace, Com-
mand and Unknown messages. This argument is mandatory, and the let-
ters may be associated.

The message kinds are:
F)atal: Program will cleanly end now because a fatal error occured,

e.g. a required initialization of the program could not occur or an
error can not be safely recovered or the program is in an unstable
status and can not go on.

5 SIC LANGUAGE INTERNAL HELP 77

E)rror: Command or action could not be executed to its end. Such er-
rors can be recovered, and program can continue to run safely.
- It denotes an attempt to do something not allowed or not imple-
mented in the command.

- Command can not run to the end as it will not produce the expected
result.

W)arning: Command or action will go on executing without an error, but
- the user must be warned about a strange behavior;
- a result is produced, but user must be careful with its interpre-
tation.

R)esult: Information directly requested by the user. It concerns all
the results returned by active commands. This should be understand
as:
- "You asked for this, as a result, that happened"
- "This was created/changed accordingly to your request"
- "Here is what you asked for (some values,...) "

I)nfo: Additional information not directly expected by the user when
he runs the command. It gives secondary informations on current ac-
tions, or it concerns more or less the result and the processes to
obtain it, but it is not the result itself.

D)ebug: High level debugging, e.g. follow the steps of complex compu-
tation. By default, it will not be printed. User can activate it if
strange non-fatal behavior occurs.

T)race: Low-level debugging, e.g. track the program execution. By de-
fault, it will not be printed. User must use it wisely because it
may produce thousands of messages in a row (for example, in loops).
User can activate it in case of unforeseen fatal behavior.

C)ommand: Each command typed on the terminal is resolved and can
printed back to terminal and to logfile. This is equivalent to the
obsolescent SIC VERIFY ON behavior.

U)nknow: It is reserved for the migration from the old message facili-
ties to the new one, and to handle internal errors in messaging pro-
cess.

Simple examples:
SIC> SIC MESSAGE
sic on-screen active filter: FEWRI---U
sic to-mesfile active filter: FEWRIDTCU
SIC> SIC MESSAGE SIC GLOBAL
sic on-screen active filter: FEWRI---U
sic to-mesfile active filter: FEWRIDTCU
global on-screen inactive filter: FE-------
global to-mesfile inactive filter: FEWRIDTCU
SIC> SIC MESSAGE SIC S+D
sic on-screen active filter: FEWRID--U
sic to-mesfile active filter: FEWRIDTCU
SIC> SIC MESSAGE SIC L-DT

5 SIC LANGUAGE INTERNAL HELP 78

sic on-screen active filter: FEWRID--U
sic to-mesfile active filter: FEWRI--CU
SIC> SIC MESSAGE SIC A=FEWRI
sic on-screen active filter: FEWRI----
sic to-mesfile active filter: FEWRI----
SIC> SIC MESSAGE GLOBAL ON
Turning ON global filtering rules
SIC>

Q: I’ve lost all messages, SIC MESSAGE is silent, what happens?
A: Many message kinds are certainly disabled, in particular Results

printed to Screen. This is why SIC MESSAGE is also silent. Consider
typing SIC MESSAGE SIC S+R and you should see back messaging filters.

5.30.24 SIC MKDIR

[SIC\]SIC MKDIR New_Directory

Create a new directory. It is equivalent to Unix command
mkdir -p New_Directory

but system independent. No error is raised if the directory already ex-
ists.

5.30.25 SIC MODIFIED

[SIC\]SIC MODIFIED FileName StrName

Check if a "file" was modified since last call, and fill the Sic struc-
ture named "StrName" accordingly. The file can be a regular file or a
directory. If file is a symbolic link, evaluation is made on its target.
On first call, the structure is set up and the file is assumed modified.
On subsequent calls, file and calling dates are compared and modifica-
tion status is evaluated. In case of doubt (e.g. modification time un-
changed at the file system precision), a modification is assumed.

The output structure has the following (scalar) components:
- StrName%FILE: the file name (character string),
- StrName%MTIME: the file modification time (long integer, in

nanoseconds since 01-jan-1970),
- StrName%PTIME: last time a modification was proved (long integer, in

nanoseconds),
- StrName%MODIF: file was (or may have been) modified or not since

last call (logical)
The structure must be a user-defined, global, variable. If the structure
or its elements are missing, they will be created at first call.

5.30.26 SIC OUTPUT

[SIC\]SIC OUTPUT [FileNew]

5 SIC LANGUAGE INTERNAL HELP 79

Redirect the output of the SIC\SAY command to the specified file. The
file is erased if it was existing. If no argument is present, any cur-
rently opened output file will be closed, and the output of command SAY
is re-directed to the terminal.

5.30.27 SIC PRECISION

[SIC\]SIC PRECISION [SINGLE|REAL|DOUBLE|AUTO]

Select the precision of all computations using SIC variables. Automatic
precision will use the highest precision present in an expression.

5.30.28 SIC PRIORITY

[SIC\]SIC PRIORITY [Level1 Lang1 ... [LevelI LangN ...]]

SIC PRIORITY redefines the languages precedence when an ambiguous com-
mand (same name in several languages) is encountered: the lower the
precedence level, the higher the priority. By default, they are all the
same (level is set to 1), i.e. there is no automatic ambiguity resolu-
tion.

The priority levels can be changed for one, some, or all languages. Lev-
elI is an integer, which must be followed by one or more languages:
> 0: the level value is used directly, the lower level the higher pri-

ority,
= 0: the level value is Automatic, i.e. the priority comes after the

languages with an explicit positive value and before the ones
with a negative value,

< 0: set the priority from the end of the list, e.g. -1 means that the
language must have the lowest priority.

Example:
Level Priority
+1 1
+2 2
+4 3
0 4

-2 5
-1 6

Note that the priority list is compressed if the values are discontin-
ued.

A call to SIC PRIORITY without arguments prints the current levels for
all languages.

5 SIC LANGUAGE INTERNAL HELP 80

5.30.29 SIC RANDOM SEED

[SIC\]SIC RANDOM_SEED [DATETIME|URANDOM|Value]

This command resets the Fortran random seed used to initialize the se-
quence of pseudorandom numbers returned by the functions RANDOM and
NOISE. Several arguments are allowed:
- DATETIME: compute a seed based on current date and time. This is

portable but not highly random, e.g. 2 processes running at the same
time can end with the same seed.

- URANDOM: use the operating system special file /dev/urandom as a
random number generator, if available. This is the best choice but
it is not fully portable.

- Value: the user can specify its own seed (integer value). Reusing
the same value will ensure the same sequence of pseudorandom numbers
later on, which can be useful depending on the context.

Note that this command affects the seed, i.e. the starting point of the
sequence of pseudo-random numbers. It does not affect the randomness of
those numbers (i.e. you can safely use the Value 1 if you want).

The default at startup is DATETIME, i.e. the sequence will always be
different from one session to another. This default can be overriden by
setting the Sic logical GILDAS_RANDOM_SEED to DATETIME, URANDOM, or an
integer value in the file $HOME/.gag.dico

Without argument, the command displays the current Fortran random seed
in use. For debugging purpose.

5.30.30 SIC RENAME

[SIC\]SIC RENAME FileOld FileNew

Rename an existing file. It is equivalent to Unix command
mv FileOld FileNew

but system independent.

5.30.31 SIC SAVE

[SIC\]SIC SAVE [FileName Symbol]

This is a specific command (currently) used by the ALMA simulator to
copy into an output file (a procedure) the name of any newly defined SIC
variable, prefixed by whatever Symbol is given here.

Without argument, just closes the current "save" file.

Can be used whenever you need to apply different actions to the same set
of variables, or get two sets of variables with similar names (one pre-

5 SIC LANGUAGE INTERNAL HELP 81

fixed, the other not) e.g. to store default values or last values. Re-
defining the Symbol and executing the created procedure will do the de-
sired job on the list of variables defined when SIC SAVE was active...

sic save define_all TOTO
define a Bunch Of Variables Here /global ! Only global stuff, though...
sic save
!
symbol TOTO "EXA &1 " ! Examine the Variable name
@ gag_proc:define_all ! for all variables in this list...
!
sic output init_all.sic
symbol TOTO "@ sicvar_init" ! Look into gag_pro:clone_var.sic
@ gag_proc:define_all ! for further explanation
sic output
@ init_all.sic ! Initialize them
!
define structure CLONE% /global
sic output clone_all.sic
symbol TOTO "@ sicvar_clone CLONE% " ! Will actually create a
@ gag_proc:define_all ! copy of all variables into structure CLON
sic output
symbol TOTO continue
@ clone_all.sic ! Duplicate them into CLONE% structure

5.30.32 SIC SEARCH

[SIC\]SIC SEARCH FileName

(Obsolescent).
Search for the specified file, and set the logical SIC%EXIST to YES if
the file exists, NO if not.

This is an obsolescent feature. The same functionality is available
through the logical function FILE("FileName").

5.30.33 SIC SYNTAX

[SIC\]SIC SYNTAX [FIXED|FREE]

control the syntax for mathematic operations. In FIXED syntax, the LET
command is compulsory. In FREE syntax, commands lines like

A[I,J] = SIN((2*I+J)/PI)
where A is a known variable, are recognized as assignement and automati-
cally expanded to the equivalent FIXED syntax

LET A[I,J] SIN((2*I+J)/PI)
Free syntax cannot be used for the LET /WHERE command. See HELP SYNTAX\
for details.

5 SIC LANGUAGE INTERNAL HELP 82

5.30.34 SIC SYSTEM

[SIC\]SIC SYSTEM [ERROR|NOERROR]

Indicate if the command SIC\SYSTEM can raise errors or not, i.e. if any
error occuring when executing the string command should stop the Sic ex-
ecution flow. Default is true.

5.30.35 SIC TIMER

[SIC\]SIC TIMER [Time [HOURS|MINUTES|SECONDS]]

All Gildas programs are automatically closed (normal exit) after a de-
fined period of inactivity at the prompt level. This period is defined
by the Sic timer.

With a Time argument, set the timer to the input value. Unit is a key-
word which can be Hours, Minutes, or Seconds (default Hours). A null or
negative value disables the timer.

Without argument, display the current value of the timer.

The timer can be customized in a Sic logical named SIC_TIMER (integer
value, in hour unit). This value is evaluated once at startup from one
of the Sic logical dictionaries. Later changes are ignored. Default is 3
hours.

5.30.36 SIC USER

[SIC\]SIC USER

Will return the user name (usually with host name) in symbol SYS_INFO.

5.30.37 SIC VERIFY

[SIC\]SIC VERIFY [ON|OFF]

Control the listing of macros, loop or stack during execution.

5.30.38 SIC VERSION

[SIC\]SIC VERSION

Return the version number and credits or copyrights for the languages or
subprograms currently used.

5.30.39 SIC WAIT

[SIC\]SIC WAIT Seconds

5 SIC LANGUAGE INTERNAL HELP 83

Will wait for the required number of seconds. Fraction of seconds can be
specified.

5.30.40 SIC WHICH

[SIC\]SIC WHICH Procedure

Return the full path of the procedure or macro which will be executed by
"@ Procedure" or "TYPE Procedure" calls.

See HELP @ for details on which directories procedures and macros are
searched in.

5.30.41 SIC WINDOW

[SIC\]SIC WINDOW [ON|OFF]

Allow or disallow use of GUI mode.

5.31 SORT

[SIC\]SORT KeyVar [Var1 [... VarN]]

Sort an ensemble of 1-D or 2-D SIC variables by increasing values of the
(1-D only) KeyVar variable. A standard use is to sort a complete GILDAS
table, using
DEFINE TABLE A MyFile WRITE
SORT A[3] A
DELETE /VAR A

As shown in the example, the command handles the case where KeyVar is a
subset of any of the variables to be sorted. However, if there is alias-
ing between any of the Var1 ... VarN variables, the result is unpre-
dictable.

The command can be useful for further use of the COMPUTE LOCATION com-
mand, or plots using GreG. To mimic the behaviour of the (obsolete)
GREG\SORT command, use

SIC\SORT Key Var2 Var3
where Key is any of X Y Z, and Var2 and Var3 the two other ones.

5.32 SYMBOL

[SIC\]SYMBOL [X ["Translation"]] [/INQUIRE "Prompt Text"]

This commands defines, lists and deletes symbols.

SYMBOL
Lists the Symbol table

5 SIC LANGUAGE INTERNAL HELP 84

SYMBOL X
Gives the translation of the symbol X

SYMBOL X "Translation"
Defines a new symbol or update the precedent symbol definition.

SYMBOL X /INQUIRE "Prompt Text"
Inquires the definition of a symbol with the specified prompt (for

interactive session only).

A symbol is an abbreviation of any character string. The symbol transla-
tions are substituted to the corresponding symbols when found in a com-
mand line. In a command line, symbol TOTO must appear inside simple
quotes (like ’TOTO’) to be translated, except for the line beginning
where SIC assumes the first word might be a symbol. A symbol definition
may refer to another already defined symbol. The substitution occurs ev-
erywhere, even within the character strings.

Symbols in FOR-NEXT loops are substituted at compilation time (i.e. when
the command line is written but not yet executed), using their current
value. In a loop, redefining a symbol which is already defined out of
the loop has no effect since its occurences are substituted before the
execution of all the commands.

Symbols can be deleted when they are no longer usefull, using command
DELETE /SYMBOL.

5.33 SYNTAX\

SYNTAX of SIC commands

The SIC syntax is the following :
[LANG\]COMM [Arg1 [Arg2 [...]]] [/OPT1 [p1 [...]] [/OPT2 [...]]

where [] indicates optional fields.

Language, command and options can be abbreviated. The language field
(LANG\) is optional but may help resolve ambiguities.

First, the line is stripped of duplicate separators (spaces or tabs).
Character strings (entities included between double quotes) are not af-
fected by this formatting.

Then symbols (entities included between simple quotes, plus the lan-
guage-command field) and tokens (macros parameters 1 2 etc...) are
translated, even within character strings.

Finally, the line is analysed for ambiguities and the language, command
and option names are expanded. An option is a word beginning by a slash

5 SIC LANGUAGE INTERNAL HELP 85

(e.g. /OPT1 is an option in the above example).

All arguments can be character or mathematical variables or expressions,
depending on the type required by the program. Character expressions can
be concatenated with implicit formatting of variables and mathematical
expressions, such as in

"The real number PI is equal to "’ACOS(-1.0)’
Variable and expressions are not evaluated during the parsing, but only
during the execution. Character variables must be included between
quotes for translation, e.g.

DEFINE CHARACTER C*6
LET C 3.14159
DEFINE REAL A
LET A ’C’/PI
EXAMINE A
A = 0.9999705

5.34 SYSTEM

[SIC\]SYSTEM ["Command"]
$ Command

Execute a command from the operating system, or create a subshell. If no
argument is given, start a subshell by running the default user shell.
The subshell can be terminated by typing ’exit’ or ’bye’ or ’logout’,
depending on system version, and controls return to SIC in this case.

If an argument is given, executes the command in a subshell.

Note that Unix environment variables cannot be defined in such a way,
since it is a subshell. In particular, use command SIC DIRECTORY to
change your working directory.

$ Command
System commands can also be executed directly from the SIC level using
the $ token. "Command" must be a valid operating system command in the
default shell of the user.

5.35 TYPE

[SIC\]TYPE [Macro_Name] [/OUTPUT OutFile]

TYPE lists the commands of the named macro. The same search rules as for
command SIC\@ apply (see HELP @). The command SIC WHICH can be used if
you have doubts on the TYPE’d macro.

If no argument is given, the Stack is listed.

6 GUI LANGUAGE INTERNAL HELP 86

The output of the command can be redirected to a file instead of the
standard output (STDOUT) thanks to the option /OUTPUT.

5.36 @

[SIC\]@ Macro_Name [Par1 [Par2 [...]]]

Read commands from macro (or procedure) Macro_Name and executes them.
Up to 8 parameters can be given. These parameters will be substituted to
the tokens 1, 2, ..., 8 found in the body of the procedure, even within
character strings (e.g. Par1 for token 1).

Default file extension is program dependent (usually the program name,
or .pro), and can be changed using command SIC EXTENSION. Procedures are
searched for according to the following rules:
- first in the directory designated by the logical name GAG_PROC:
- then, in order, in all the directories in the path specified by the

logical name MACRO#DIR: (see command SIC MACRO).
One can use the command SIC WHICH to be sure of the macro which will be
executed.

All commands will be echoed to the terminal when executed if the VERIFY
switch is ON (see command SIC VERIFY).

Macros (as any other text files) can be edited using a standard text ed-
itor by typing command EDIT with the macro file name as argument (see
EDIT and SIC EDIT).

6 GUI Language Internal Help

6.1 Language

GUI\ Command Language Summary

BUTTON : Associate a command with a button
END : Read parameters from window and set variables accordingly
GO : Activate the currently defined window
MENU : Create a pulldown menu for next buttons
SUBMENU: Create a submenu in the current menu
PANEL : Define or delete an input window or menubar
WAIT : Wait for GO button in the current window
URI : Open any kind of URI, e.g. html link or file name.

6.2 BUTTON

GUI\BUTTON "Command" Button ["Title" HelpFile [OptionTitle]]
(Graphic-User-Interface mode only)

6 GUI LANGUAGE INTERNAL HELP 87

Creates a button widget to execute the specified "Command".

If no "Title" is given, the button will have no associated variables,
and will appear with other similar buttons at the top of the window.

If a "Title" argument is present, a "secondary parameters" window is
created. In the main window, the "title" appears followed by 3 buttons:
one with the button name, one pointing to the secondary parameters win-
dow, and a "HELP" button. All subsequent LET commands will create wid-
gets in this secondary window, until a new GUI\BUTTON command is typed.
"HelpFile" specifies a text file where the help for the variables can be
found, and "OptionTitle" is a title for the secondary window (and asso-
ciated button).

6.3 END

GUI\END

Reads all parameters from the current window(s) and set the modified
variables accordingly. Normally reserved for programming applications.

6.4 GO

GUI\GO ["Command"]

Map the windows defined by the previous GUI\PANEL command and its asso-
ciated GUI\BUTTON and LET commands. "Command" is an optional command to
be executed when button "GO" is pressed.

6.5 MENU

GUI\MENU "Title" [/CLOSE] [/CHOICES]

Creates a pulldown menu to group a set of buttons without associated pa-
rameters. Subsequent GUI\BUTTON or GUI\URI commands will add buttons in
the pulldown menu.

When option /CLOSE is present, closes the current pulldown menu. Subse-
quent GUI\BUTTON or GUI\URI commands will create buttons on the main
menubar.

This command is valid only when creating a detached menubar, i.e. after
a GUI\PANEL/DETACH command has been typed.

6.6 SUBMENU

GUI\SUBMENU "Title" [/CLOSE]

Create a new submenu in the current menu. Subsequent GUI\BUTTON or

6 GUI LANGUAGE INTERNAL HELP 88

GUI\URI commands will add buttons in this submenu.

When option /CLOSE is invoked, closes the current submenu. Subsequent
GUI\BUTTON or GUI\URI commands will create buttons in the parent menu.

6.7 PANEL

GUI\PANEL "Title" HelpFile [/DETACH] [/LOG LogFile]
GUI\PANEL [HelpFile] /CLOSE

Activate the Graphic-User-Interface input mode for variables. A window
with the specified title is created, but not mapped to the screen. Suc-
cessive LET commands will create widgets in this window to allow to mod-
ify variables by entering values in the widgets. Command GUI\GO "Com-
mand" will map the window to the screen. Once the proper input has been
defined, clicking on the "GO" button will setup all the related vari-
ables in the main program, and execute the associated command. Clicking
on button "UPDATE" will only set the variables. Clicking on button
"ABORT" will return without modifying the variables.

Help is available in the window through the "HELP" button, but also
clicking in any prompt area.

See LET command for details.

If option /DETACH is present, a menubar is created instead of a normal
window. Several buttons can be attached to this menubar using the
GUI\BUTTON and GUI\MENU commands, but no variables can be set in this
mode. The menubar is mapped when command GUI\GO is typed.

If option /CLOSE is present, the last detached menubar, or the specified
one, is deleted.

/LOG option stores variable definitions in specified log file.

6.8 WAIT

GUI\WAIT

Wait for button "GO" "UPDATE" or "ABORT" to be pressed. The command mon-
itor stays in hold state until one of these buttons in the main window
are pressed.

6.9 URI

GUI\URI

Open any kind of URI (Uniform Resource Identifier), e.g. html link or
file names, for example:

7 VECTOR LANGUAGE INTERNAL HELP 89

GUI\URI "http://www.iram.fr/IRAMFR/GILDAS/" "GILDAS Web Page"
GUI\URI gag_doc:pdf/gildas-intro.pdf "GILDAS Introduction"

The choice of the software used to open the URI is let as much as possi-
ble to the system (which should itself honor the user’s preferences).

7 VECTOR Language Internal Help

7.1 Language

VECTOR\ Language Summary

EXPLAIN [Task] : Gives explanation about a GILDAS task
FITS : Convert between FITS files and Gildas images
HEADER : List the header of a Gildas image
RUN Task : Activate a GILDAS task
SPY [Task] : Look at current status of detached Tasks
SUBMIT Task : Submit a GILDAS Task in batch queue GILDAS_BATCH
TRANSPOSE : Transpose data cubes

7.2 EXPLAIN

[VECTOR\]EXPLAIN [Task [Parameter]]

Gives explanation about a GILDAS task. If Parameter is specified, EX-
PLAIN will give help about the parameter. Parameter = * can be used to
list help about all parameters of the specified task. Note that if Pa-
rameter is absent, EXPLAIN accesses the topic "Summary".

The GILDAS tasks can only be activated from the VECTOR\ language, with
commands RUN or SUBMIT. The VECTOR\ language is included in programs
VECTOR, GRAPHIC and other reduction programs such as MAPPING.

From within RUN and SUBMIT commands, you can get help upon the current
Task by typing GOLD ? in the editor, or by answering ? to a prompt in
non editing mode.

7.3 FITS

[VECTOR\]FITS FitsFile WhichWay GildasFile [/STYLE Style] [/XTENSION
Number] [/BITS Nbit]

Convert between FITS files and Gildas images. The FITS command is just a
wrapper around the FITS_GILDAS and GILDAS_FITS tasks. See those for de-
tails.

[VECTOR\]FITS OutputFile.fits FROM InputFile.gdf [/STYLE Style]
[/BITS Nbit]

7 VECTOR LANGUAGE INTERNAL HELP 90

Create a FITS file from a Gildas image. The layout of the FITS file de-
pends on the specified "Style", although default styles will be used de-
pending on the Gildas image (e.g. UVFITS is used for UV Tables, STANDARD
is used for images). The number of bits is controlled by "Nbit", and de-
faults to -32 for images, and 16 for UV data.

[VECTOR\]FITS InputFile.fits TO GildasFile.gdf [/STYLE Style]
[/XTENSION Number]

Convert the InputFile.fits FITS file into a Gildas image in Gildas-
File.gdf, using the appropriate "Style". A specific XTENSION (not yet
implemented!) could be used instead of the main FITS header when needed.

7.4 HEADER

[VECTOR\]HEADER GildasImage [/EXTREMA]

List the header of the GildasImage file.

The /EXTREMA option computes (or recomputes) and updates the extrema
section in the header of the GildasImage file.

7.5 RUN

[VECTOR\]RUN Task_Name [Parameter_File] [/EDIT] [/NOWINDOW] [/WIN-
DOW]

Execute a GILDAS task as a detached process. If no directory is speci-
fied in the task name, the Task is assumed to be in the GILDAS_LOCAL: or
GILDAS_RUN: area. The input parameters are read from the file Parame-
ter_File, which is a SIC procedure with commands from the TASK\ lan-
guage. A * can be used instead to specify a parameter file of name
Task_name.INIT in the current directory.

The parameter file can be prepared in "Window-mode", or using a text ed-
itor.

In Window-mode, activated implicitely in the RUN_WINDOW variable is
YES (default on X-Window systems), or explicitely if the /WINDOW option
is specified, a panel appears to enter all parameters. Help if available
by clicking on the prompt string for each parameter, or on the HELP but-
ton. Once all parameters have been adequately specified, the task can
be activated by clicking OK, or aborted by clicking ABORT.

The text-editor mode is activated using the /EDIT option. The param-
eter file of default name Task_name.INIT is edited before submission,
taking a template in GILDAS_RUN: area if no version of this file already
exist. If this template file does not exists, it may be that the Task
you want to run does not exist either, or is not yet debugged at all.

7 VECTOR LANGUAGE INTERNAL HELP 91

Once the parameter file has been prepared in Edit-mode or Window-mode,
the RUN command will prompt you for all missing parameters in the .INIT
command file. Help on the parameter can then be obtained answering ? to
the prompt.

The RUN command checks that the Task exists, and only GILDAS Tasks can
be submitted in this way. A second SIC procedure is executed before task
submission to check the validity of input parameters. If any parameter
is invalid, an error is returned and the Task not submitted.

The input file which is created by the RUN command is located in the
GAG_SCRATCH: directory and may be deleted after Task execution. The
output of the Task is in the file GAG_LOG:Task_Name.GILDAS, which may be
listed or printed later on. Task execution may be synchronous (the main
program waiting for task completion) or asynchronous (control returns to
the main program immediately). If the Task terminates before you exit
from the activating program, a termination message will be typed on the
terminal, giving the termination status.

Use the EXPLAIN command for help on available Tasks.

Task may execute on a remote node rather than on the local machine. The
node name is controlled by logical name GILDAS_NODE. If GILDAS_NODE =
LOCAL, local execution is performed. If not, GILDAS_NODE must be the
node name of the computer on which execution will be performed. No syn-
chronisation is offered for remote execution.

7.6 SPY

[VECTOR\]SPY [Task_Name]

Displays the status of all active GILDAS tasks, or lists the last output
from the specified task.

7.7 SUBMIT

[VECTOR\]SUBMIT Task_Name [Parameter_File] [/EDIT] [/NOWINDOW]
[/WINDOW]

The SUBMIT command is similar to the RUN command, except that the Task
is submitted to a batch queue (named GILDAS_BATCH) instead of being exe-
cuted as a detached process. See RUN command for details.

Use the EXPLAIN command for a documentation on available Tasks.

7.8 TRANSPOSE

[VECTOR\]TRANSPOSE Input Output Order

8 TASK LANGUAGE INTERNAL HELP 92

This command takes an input n-D SIC variable or GILDAS data cube to pro-
duce an output transposed SIC variable or n-D cube according to the
transposition order specified by Order (21, 312, 213, etc...). For exam-
ple:

VECTOR\TRANSPOSE TEST.VLM TEST.LMV 231
will transpose Gildas data file. For files, the transposition takes
place in RAM memory if the sic logical SPACE_GILDAS (in megabytes unit)
is big enough, else it takes place on disk.

DEFINE REAL A[10,2] B[2,10] VECTOR\TRANSPOSE A B 21
will transpose the A SIC variable to the B SIC variable. SIC variables
must be of the same type.

MISSING FEATURE: If A and B are IMAGE variables, the header is not ade-
quately transposed.

8 TASK Language Internal Help

8.1 Language

TASK\ Command Language Summary

Define and specify the input parameters of tasks. Only available in a
Library mode, not to be used interactively.

CHARACTER : Define a character string parameter
FILE : Define a filename
GO : Activate the task
HELP : Show the help
INTEGER : Define an integer parameter
LOGICAL : Define a logical parameter
MORE : Show a separator in a widget
REAL : Define a real parameter
VALUES : Define a real parameter through a variable length expression
WRITE : Write parameter value to task parameter file.

8.2 CHARACTER

TASK\CHARACTER "Prompt text" Name = [Value] [/CHOICE List]

Define the parameter Name of Character type (C*256), and assign it a
value if specified. Otherwise, prompt with the text for a value.

A list of predefined values can be provided with the option /CHOICE. If
a wildcard (*) is present in the list, a custom value can also be set by
the user.

8 TASK LANGUAGE INTERNAL HELP 93

8.3 FILE

TASK\FILE "Prompt text" Name = [Filename] [/OLD] [/NEW]

Define the parameter Name of Character type, and assign it a filename.
Otherwise, prompt with the text for a content. In Windows mode, launch
a file browser to get the filename.

NOT IMPLEMENTED: if option /OLD (resp. /NEW) is present, the file must
(resp. must not) already exist.

8.4 GO

TASK\GO

In a .init file, activate the Widget if in Windows mode, or finish pa-
rameter entry and activate the task checker.

In a .check file, launch the Task.

8.5 INTEGER

TASK\INTEGER "Prompt text" Name[Ndim] = [Value .. Value_Ndim]
[/RANGE]
[/INDEX String1 ... StringN [*]] [/CHOICE Value1 ... ValueN [*]]

Define the parameter Name of Real type and dimension Ndim (or scale),
and assign it a value if specified. Otherwise, prompt with the text for
value(s).

The /RANGE option restrict the valid range for the values. In Windows
mode, it activates a slider.

A list of character strings can be provided with the option /INDEX. This
/INDEX option means to return the rank of the given string among the
available choices. A * as the last choice means any other value is also
valid.

A list of predefined values can be provided with the option /CHOICE. If
a wildcard (*) is present in the list, a custom value can also be set by
the user.

8.6 LOGICAL

TASK\LOGICAL "Prompt text" Name = [YES|NO]

8 TASK LANGUAGE INTERNAL HELP 94

Define the parameter Name of Logical type, and assign it a value if
specified. Otherwise, prompt with the text for a content.

8.7 MORE

TASK\MORE

8.8 REAL

TASK\REAL "Prompt text" Name[Ndim] = [Value .. Value_Ndim] [/RANGE]
[/SEXAGESIMAL] [/CHOICE Value1 ... ValueN [*]]

Define the parameter Name of Real (Real*8 in fact) type and dimension
Ndim, and assign it a value if specified. Otherwise, prompt with the
text for value(s).

The /RANGE option restrict the valid range for the values. In Windows
mode, it activates a slider.

If option /SEXAGESIMAL is present, a sexagesimal string can be provided:
it will be converted to a floating point value.

A list of predefined values can be provided with the option /CHOICE. If
a wildcard (*) is present in the list, a custom value can also be set by
the user.

8.9 VALUES

TASK\VALUES "Prompt text" Name = [Value1 ... ValueN]

Define the parameter Name of Character type, and assign it a string
holding all values specified as further arguments. Values can be math
expression and will be converted to numerics before assignment. This
command allows to specify variable dimension numeric arrays as task pa-
rameters.

8.10 WRITE

TASK\WRITE Name

This command is only valid in a .check file. It writes the parameter
Name on one line in the .par file, followed by its content in the next
lines.

9 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 95

9 SIC Error Messages and Recovery Procedures

sic may output a number of error messages. These are usually self explanatory, and most of them
refer to typing errors, or to an unanticipated degree of complexity reached during the program
execution (too many loops, macros, complex mathematic formulas, etc...). More severe errors
may appear, usually due to internal logic errors in the calling program. SIC is a relatively safe
program. However, its very flexible possibilities, and in particular the possibility of calling it as
a command monitor in multi-language application, possibly written independently by different
programmers, make it very difficult to be error free. This section list all the error messages
written by SIC, and some (but not all) information messages. The format of a SIC message is
the following

C-FACILITY, Explanation text

C is a letter indicating the severity of the message, and may be :

I for Information

W for Warning. Normal execution can proceed, but the operation was not completed.

E for Error. Something really went wrong, and a corrective action should (usually) take place.
Suggested actions are mentioned.

F for Fatal Error. This is a programming error, either in SIC, or in the calling program, or an
unrecoverable error causing a program abort (such as a PAUSE in batch sessions).

FACILITY is a mnemonic of the subroutine or of the command where the error occured.
"Explanation text" is a concise but usually self explanatory message.
In case of Fatal errors, the “recovery procedure” usually indicates to “Submit an SPR”. An

SPR is a Software Performance Report, and it should be sent to the sic authors, by E-Mail at

gildas@iram.fr

(GILDAS is a reserved account for all gildas software).

9 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 96

List of Error Messages

9.1 A through C

E-COMPUTE, TRANSPOSE not implemented
SIC, COMPUTE command. Self explanatory...
User action : If your variables are images, use the VECTOR\TRANSPOSE command instead.

E-COMPUTE, Variable cannot be written
SIC, COMPUTE command. The output variable is defined ReadOnly.
User action : Probably a user error. Check your variable name. If it is what you wanted,
it means you are trying to overwrite a protected program defined variable, and this is
forbidden of course.

E-COMPUTE, Variable must be Real
SIC, COMPUTE command. The required actions operate only on Real variables.
User action : Define intermediate variables if necessary.

E-COMPUTE, Invalid OUTPUT variable dimensions
SIC, COMPUTE command on Fast Fourier Transform action.
User action : See Help.

9.2 D

E-DECODE, Invalid arithmetic expression
SIC, Argument decoding routines. An arithmetic expression used as argument is invalid.
The message is usually preceded by more detailed explanation.
User action : correct the expression. If a message ”Internal logic error” appeared, submit
an SPR.

E-DECODE, Invalid logical expression
SIC, Argument decoding routines. A logical expression used as argument is invalid. The
message is usually preceded by more detailed explanation.
User action : correct the expression. If a message “Internal logic error” appeared, submit
an SPR.

E-DECODE, Error computing <String>
SIC, Argument decoding routines. Some error occured during evaluation of a valid arith-
metic expression. A more detailed text precedes this message. This is usually due to
undefined variables, or arithmetic errors like square root of negative values.
User action : correct any typing error. Check values of variables if an arithmetic error
occured.

E-DECODE, Option <Integer> or argument <Integer> out of bounds
SIC, Argument decoding routines. This is a programming error : a command required too
many arguments or options.
User action : Notify the programmer who should consult the sic programming manual.

E-DECODE, You have overwritten the command line pointers.
SIC, Argument decoding routines. This is a programming error: the program tries retrieving
an argument after another command line has been analysed. This frequently occurs when

9 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 97

greg is called in library mode by another program. This should only be done AFTER all
arguments have been retrieved.
User action : Notify the programmer who should retrieve all needed arguments before he
starts analysing another line.

E-DECODE, Missing argument number <Integer> of Command <String>

E-DECODE, Missing argument number <Integer> of Option <String>
SIC, Argument decoding routines. The specified argument is mandatory for the command
or option.
User action : specify the missing argument.

E-DEFINE, Cannot specify dimension for existing images
SIC, DEFINE or LET /NEW commands. Dimensions can only be specified when creating an
image.
User action : Don’t specify a dimension for existing images.

E-DEFINE, Invalid variable name <String>
SIC, DEFINE or LET /NEW commands. Variable names must be less than 15 characters
and begin with a letter.
User action : choose a valid name.

E-DEFINE, Invalid status <String>
SIC, DEFINE HEADER command. The header status can only be Read or Write.
User action : May be you confused DEFINE IMAGE and DEFINE HEADER. Correct your
typing.

E-DEFINE, Memory allocation failure
SIC, DEFINE or LET /NEW commands. The memory needed to create the variable could
not be obtained from the operating system, due to a shortage of system resources or quota.
This message is may be preceded by an operating system error message. On a typical site,
this error will only occur if you are using (very) big arrays.
User action : delete any unused variable, clear the plot if any, and then retry. Try to use
images instead of arrays. If this does not work, exit the program, reenter it and retry. If
this is not sufficient, consider whether you really need such big arrays. If the answer is yes,
you might consider asking your system manager to increase the relevant quota.

E-DEFINE, Missing dimension of new image
SIC, DEFINE command. The dimension of a new image must be specified
User action : specify the dimension.

E-DEFINE, Only last dimension can be extended
SIC, DEFINE command. The EXTEND request is not acceptable.
User action : see DEFINE IMAGE internal help.

E-DEFINE, Syntax error
SIC, DEFINE FUNCTION command. The function definition is invalid.

E-DEFINE, Too many variables
SIC, DEFINE or LET /NEW commands.
User action : delete some existing variables, or use them instead of defining a new one. If
you cannot, ask your system manager about increas sic workspace.

9 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 98

E-DEFINE, Too many arguments
SIC, DEFINE FUNCTION command. Invalid syntax: only one function definition at a time
is possible
User action : use several DEFINE FUNCTION commands if necessary.

E-DEFINE, Variable <String> already exists
SIC, DEFINE or LET /NEW commands. The specified name already is a known variable.
User action : use another name, or use (with command LET the already defined variable if
you believe you may do so.

E-DELETE, Incompatible options
SIC, DELETE command. The options /FUNCTION, /SYMBOL and /VARIABLE are mutually
exclusive.

E-DELETE, Missing option
SIC, DELETE command. One of the options /FUNCTION /SYMBOL and /VARIABLE must be
present.

E-DELETE, No such variable <String> SIC, DELETE command. The specified variable can-
not be deleted because it does not exist.

E-DELETE, Variable <String> not deleted SIC, DELETE command. The variable could not
be deleted, because it is program defined
User action : May be a typing error. Check the variable name.

E-DIMENSION, Invalid dimension <string>
Any command with a numerical argument. In the present version of sic indexes of arrays
can only be constants or scalar numerical variables. Complex numerical expressions are not
allowed.
User action : use an intermediate variable.

E-DIMENSION, Invalid mixture of implicit and explicit dimensions
SIC, LET command. Implicit loops on arrays cannot be mixed with explicit indexes for
other dimensions.
User action : either use an explicit FOR-NEXT loop, or rearrange your expression to use the
implicit loop (which is much faster).

E-DIMENSION, Invalid string length <Number>
SIC, DEFINE or LET /NEW commands. Character variable is not positive.

E-DIMENSION, Invalid variable name <string>
SIC, DEFINE or LET /NEW commands. Variable names must be less than 15 characters
and begin with a letter.
User action : choose a valid name.

E-DIMENSION, Missing character size
SIC, DEFINE or LET /NEW commands. The size of character string must be specified.
User action : specify a length.

E-DIMENSION, Missing closing bracket
Any command with a numerical argument. An opening bracket is not matched with the
corresponding closing bracket.
User action : add the appropriate closing bracket.

9 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 99

E-DIMENSION, Too many dimensions
SIC, DEFINE or LET /NEW commands. Only 4 dimensions are supported.
User action : decrease the number of dimensions.

9.3 E

I-EDIT, Using <String> editor
SIC, EDIT command with argument, information message. The specified editor is called
to edit the file specified as argument. Control will return to sic after the editing session.

I-EDIT, Writing stack content on STACK.Ext
SIC, EDIT command without argument, information message. STACK.Ext, where Ext is
the current macro extension, will be edited using current editor.

E-EDIT, File name too long
SIC, EDIT command. The corresponding file cannot be edited.

E-ELSE, Invalid argument <String>
SIC, ELSE command was followed by an invalid first argument.
User action : correct typing error. ELSE can only have no argument or IF as first argument.

E-ELSE IF, Invalid syntax
SIC, ELSE command with argument IF. The only accepted syntaxes for ELSE IF are:
ELSE IF <logical expression>
and
ELSE IF <logical expression> THEN

I-ERROR, occured in <String> at line <Integer>

I-ERROR, occured in Loop <Integer> (<Real>) at Line <Integer>
SIC, error traceback facility. The message contains traceback of an execution error while
executing nested macros, stack or loops. Macro names, loop number and index values are
given together with the lines being executed.
User action : If a PAUSE occurred correct the erroneous line, execute it and continue the
nested macros execution by command CONTINUE, or abort execution by command SIC\QUIT.
If an error recovery command is active, it has been automatically executed before resuming
the nested macros execution.

I-ERROR, occured in Program
SIC, error traceback facility. An error occurred in subroutine mode.
User action : signal the error to the programmer.

I-ERROR, occured in Error recovery mode
SIC, error traceback facility. An error occurred in the error recovery command or procedure.
A PAUSE is issued.
User action : correct the erroneous recovery procedure and resume execution.

F-EVALUATE, Invalid precision <Integer>
Any command with a numerical argument. This is an internal logic error in the arithmetic
processor (or a memory error on your machine!).
User action : Please submit an SPR. If you need the result, try toF modify your expression
(reorder, use intermediate variables...).

9 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 100

F-EVALUATE, Internal logic error
Any command with a numerical argument. This is an internal error in SIC.
User action : submit an SPR. You can try going around the error by modifying your
expression.

E-EXAMINE, Undefined variable <String>
SIC, EXAMINE command with an argument. The specified variable does not exist.
User action : check for typing errors.

F-EXAMINE, Invalid data format, internal logic error
SIC, EXAMINE command.
User action : Submit an SPR.

W-EXAMINE, No known variable
SIC, EXAMINE command without argument. No variable has been defined yet.

9.4 F

E-FOR, Empty list
SIC, FOR command. The compilation mode is not entered.
User action : Reenter FOR command with a list of values.

E-FOR, Incomplete list :
SIC, FOR command. The invalid list is typed with a pointer to the error.
User action : correct the error.

E-FOR, Input level too deep
SIC, FOR command. The execution level is too high, too many macros or loops are nested,
the loop cannot be executed.
User action : avoid so deeply nested situations by concatenating all macros in a single one
instead of nesting them. Deep nesting (more than 8 execution levels) is almost invariably
unnecessary.

E-FOR, Invalid loop :
SIC, FOR command. The invalid list is typed with a pointer to the error.
User action : correct the error.

E-FOR, Logical expression is too long
SIC, FOR command with /WHILE option. The logical expression specified in the /WHILE
option is too long to be stored and evaluated.
User action : make it simpler using intermediate variables.

I-FOR, Loop <Integer> has finished
SIC, VERIFY mode. Information message

I-FOR, Loop <Integer> is running with index <Real>
SIC, VERIFY mode. Information message.

W-FOR, Loop <Integer> compilation aborted
SIC, loop compilation mode. This message is typed after a QUIT command has been typed
to abort a loop compilation.

9 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 101

E-FOR, Loop buffer overflow
SIC, loop compilation mode. Too many commands were entered in the loop buffers. Loop
compilation failed.
User action : Put the remaining commands in a macro, and execute the macro within the
loop.

W-FOR, Line not valid in this context, ignored
SIC, loop compilation. The user attempted to insert an invalid command (such as HELP,
EDIT) into a loop buffer.
User action : such commands cannot be placed in loops.

W-FOR, No variable or list
SIC, FOR command. Either the loop variable or the list of values is missing.
User action : Correct the command line.

E-FOR, Only <Integer> levels of FOR - NEXT loops
SIC, FOR command. The user attempt to nest too many loops.
User action : find another solution to your problem than nesting so many loops.

E-FOR, Syntax error in list :
SIC, FOR command. The invalid list is typed with a pointer to the error.
User action : correct the error.

E-FOR, Too many arguments in list
SIC, FOR command. The FOR list is too long.
User action : Run two (or more) consecutive loops with part of the list to span all values
in your original list.

E-FUNCTION, Invalid function name <string>
SIC, function definition routine. A user program defined function has an invalid name.
Function names are limited to 15 characters and must begin with a letter. This is a
programming error.
User action : notify the programmer.

F-FUNCTION, SIC is not loaded
SIC, function definition routine. The program tries to define a function before sic has been
initialized. This is a programming error.
User action : notify the programmer.

E-FUNCTION, Too many arguments to function
SIC, function definition routine. A user program defined function has too many arguments.
Function cannot have more than 4 arguments. This is a programming error.
User action : notify the programmer.

E-FUNCTION, Too many functions
SIC, function definition routine. The program attempts to define too many user functions.
This is a programming error.
User action : notify the programmer who should contact the authors if he really needs so
many functions.

9 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 102

E-FUNCTION, <Integer> arguments to function <String>
SIC, function definition routine. A user defined function has a negative number of argu-
ments. This is a programming error.
User action : notify the programmer.

9.5 G

E-GETCOM, Line too long, buffer overflow
SIC, command reading routine. The command line is too long for the internal buffer.
User action : make it shorter if possible. If not, ask the programmer to increase the line
buffer size and relink the program. (Maximum line length in sic is 2048 characters, so we
hardly think you may be limited by this).

E-GETCOM, Read error on macro file, unit <Number>
SIC, command reading routine. An error occured while reading command from a macro.
User action : this is most likely due to a hardware problem, unless you are attempting to
read a binary file. . . Check the macro. Type the macro to see what command could not be
read, execute it and resume macro execution.

9.6 H

W-HELP, Error opening <String>
SIC, HELP command. The Help file for a language does not exist.
User action : check with the programmer or system manager that all logical names have
been correctly defined.

W-HELP, Language <String> is in library only mode
SIC, HELP command. The specified language is in library mode, no help is available for it.
User action : commands from this language cannot be accessed interactively, except by
specifying the full language name.

W-HELP, No help for <String>
SIC, HELP command. The specified command ¡String¿ is not documented.
User action : unless you are quite sure of their behaviour (or you like risks) avoid using
those undocumented commands.

9.7 I

E-IF, Invalid syntax
SIC, IF command. The second argument of the command (if present) was not THEN.

E-IMPLICIT, Invalid variable name <string>
SIC, LET command. A variable used in the implicit loop has an invalid name. Variable
names must be shorter than 15 characters and begin with a letter.
User action : Use a valid variable name.

E-IMPLICIT, Too many variables
SIC, LET command. The total number of variables defined exceeds the SIC limit. Tempo-
rary variables used in implicit loops are included in this count.
User action : Delete a few useless variables and retry.

9 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 103

E-IMPLICIT, Variable already exist
SIC, LET command. This is an internal logic error.
User action : Submit an SPR. While waiting for the correction, you may try modifying
your expression.

E-INCARNATE, Bad incarnation type
SIC, type conversion routine. The type conversion routine was called with a non numeric
output type. This is a programming error.
User action : Notify the programmer.

E-INCARNATE, Bad variable type
SIC, type conversion routine. The type conversion routine was called with a non numeric
input type. This is a programming error.
User action : Notify the programmer.

E-INTER, Ambiguous command, could be :
SIC, monitor routine. The command name is ambiguous.
User action : specify more characters or specify language to avoid ambiguities.

E-INTER, Ambiguous option, could be :
SIC, monitor routine. The option name is ambiguous.
User action : specify more characters.

W-INTER, No command on line
SIC, monitor routine. A command line only contained the language field.

E-INTER, Too many words in line
SIC, monitor routine. The user program tried to access more than 100 arguments. This is
a programming error.
User action : if you really need so many arguments, submit an SPR.

E-INTER, No options allowed for command <String>
SIC, monitor routine. The command has no options.
User action : Suppress options from the command line.

E-INTER, Unbalanced quote count
SIC, monitor routine. A command line has an odd number of double quotes.
User action : Correct typing mistake and reenter command.

E-INTER, Unknown command
SIC, monitor routine. The command does not exist in any active language.
User action : check spelling or bring more languages in the active scope (Command
SIC\SIC).

E-INTER, Unknown command <String> for language <String>
SIC, monitor routine. The command does not exist in the specified language.
User action : check spelling.

E-INTER, Unknown language <String>
SIC, monitor routine. The specified language is not known.
User action : Check spelling. If good, verify you are using the right program.

9 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 104

E-INTER, Unknown option <String> for command <String>
SIC, monitor routine. The command has no such option
User action : check spelling.

9.8 J trough L

F-LET, Cannot assign arrays
SIC, calling program. This is a programming error. The program attempts to assign values
to an array through a call to SIC LET REAL (or SIC LET INTE. . .). This is not allowed.
User action : notify the programmer. If you need to assign values to an array, call
SIC DESCRIPTOR and do the assignment in your program.

E-LET, Header structures cannot be assigned
SIC, LET command. The variable to be assigned is a generic header name.
User action : Add the % symbol after the generic header name to assign a header structure.

E-LET, Invalid attribute <string>
SIC, LET /NEW command. The only recognised attributes for a variable are GLOBAL and
LOCAL.

E-LET, Memory allocation failure
SIC, LET commands. The memory needed as work space could not be obtained from the
operating system, due to a shortage of system resources or quota. This message is preceded
by the VMS error message. On a typical site, this error will only occur if you are using
(very) big arrays or images.
User action : delete any unused variable, and then retry. If this does not work, exit the
program, reenter it and retry. If this is not sufficient, consider whether you really need such
big arrays. If the answer is yes, you might consider asking your system manager to increase
the relevant quota.

E-LET, Operation not supported on string arrays
SIC, LET command. String arrays cannot be assigned directly.
User action : Define the string arrays element by element, using a loop.

E-LET, Readonly variables cannot be modified
SIC, LET command. You are attempting to modify a protected variable declared by the
program.
User action : this is not allowed. Define another variable if you need temporary storage.

E-LET, Readonly headers cannot be modified
SIC, LET command. You are attempting to modify a protected header.
User action : This is not allowed. Redefine the header with write access if needed.

E-LET, Trailing arguments in assignement
SIC, LET command. While trying to use the element by element LET command, you omitted
or added one argument.
User action : Check the array size, and count the number of arguments.

E-LET, Undefined header <String>
SIC, LET command. The assigned header is not defined.
User action : Check variable name for typing error.

9 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 105

E-LET, Undefined variable <String>
SIC, LET command. The assigned variable is not defined.
User action : first check variable name for typing error. If you want to assign a new variable,
use DEFINE command or option /NEW of command LET to define it.

E-LET, Variable type does not match declaration
SIC, SIC LET xxx subroutine. This is a programming error. The program attempted to
assign a value of wrong type to a defined variable.
User action : notify the programmer.

E-LOGICAL, Error evaluating <String>
SIC, argument decoding routine. Evaluation of a logical expression failed. This message
is usually preceded by a more detailed text indicating why the expression could not be
evaluated.
User action : check for undefined variables.

E-LOGICAL, Invalid logical expression
SIC, argument decoding routine. An invalid logical expression was found (most likely in
an IF, FOR /WHILE or ELSE IF command). This message is usually preceded by a more
detailed text indicating why the expression is invalid.
User action : correct the expression.

9.9 M

E-MACRO, Input level too deep
SIC, @ command. A macro could not be executed due to an execution level too high.
User action : finish some macro execution before activating this one. Eventually, you may
need to rearrange your macros to avoid so many execution levels.

E-MACRO, Recursive call to macro <String>
SIC, @ command. A recursive call occurred to the specified macro.
User action : correct the macros which are causing this problem, recursive calls are prohib-
ited.

E-MACRO, Unable to open macro <String>
SIC, @ command. The macro file could not be opened for read.
User action : check for typing error, and possibly for privilege violation. This message is
followed by a second line of text indicating a more precise reason.

E-MATH, Unmatch Closing bracket
SIC, Mathematic and logical expression analysis modules.
User action : Correct the typing error.

E-MATH, Missing operator after string
SIC, function definition module. The expression is incorrect.
User action : Correct the typing error (misplaced parenthesis normally).

E-MTH, Arithmetic expression is too complex
SIC, Mathematic and logical expression analysis modules. The expression could not be
analyzed because of complexity.
User action : break it in several expression, using intermediate variables.

9 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 106

E-MTH, Error in FIND OPERATOR

E-MTH, Error in READ OPERAND
SIC, Mathematic and logical expression analysis modules. These message usually follows
more specific ones.
User action : In case the other messages require to submit an SPR, please indicate the
complete list of error messages from MTH.

E-MTH, Comparing arrays of inconsistent dimensions
SIC, Mathematic and logical expression analysis modules. An expression contains an illegal
mix of arrays with different dimensions.
User action : You probably got confused with variable names. Correct the expression.

E-MTH, Comparing non scalar variables
SIC, Mathematic and logical expression analysis modules. A logical expression attempts to
compare by order (.GT. .LT. .GE. and .LE.) two arrays. Such comparisons are invalid.
User action : You probably got confused with variable names. Correct the expression.

E-MTH, Error reading operand <String>
SIC, Mathematic and logical expression analysis modules. The corresponding string could
not be analyzed.
User action : Correct anay (likely) typing error.

W-MTH, Free operand in BUILD TREE
SIC, Mathematic and logical expression analysis modules. This is an internal logic error.
Some work space allocated during evaluation has not been freed correctly. The result is
nonetheless correct.
User action : Submit an SPR, with the faulty mathematic formula.

E-MTH, Inconsistent mixture of Arithmeti, Logical and Character expression
SIC, Mathematic and logical expression analysis modules. The expression is invalid.
User action : Correct your expression (you got confused about variable types, most likely).

F-MTH, Internal logic error in <String>
SIC, Mathematic and logical expression analysis modules. An expression was successfully
analyzed, but could not be evaluated because of an internal error in the analysis modules.
User action : Submit an SPR, with the faulty mathematic formula. Simplify your formula,
or add parenthesis to avoid possible ambiguities and try again. Eventually break your
formula into several consecutive ones.

F-MTH, Invalid arithmetic formula
SIC, Mathematic and logical expression analysis modules. The formula is invalid.
User action : Correct it. You may have confused some operators or variables.

F-MTH, Invalid character string <String>
SIC, Mathematic and logical expression analysis modules. The character string is invalid
(empty string, or missing closing quote (′′)
User action : Correct it. You may have confused some operators or variables.

9 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 107

F-MTH, Invalid number of arguments in call to <String>
SIC, Mathematic and logical expression analysis modules. The function call list is incorrect.
User action : Correct it.

F-MTH, Invalid syntax
SIC, Mathematic and logical expression analysis modules. This is an internal logic error.
An expression contained only opening parenthesis.
User action : Submit an SPR with the faulty expression.

E-MTH, Level <Number> should already have been evaluated
SIC, Mathematic and logical expression analysis modules. This is an internal logic error.
User action : Submit an SPR with the faulty expression.

E-MTH, Mathematics on arrays of inconsistent dimensions
SIC, Mathematic and logical expression analysis modules. You are trying to combine arrays
with inconsistent dimensions.
User action : Correct the expression.

E-MTH, Memory allocation failure
SIC, LET command. Memory needed as work space could not be obtained from the oper-
ating system, due to a shortage of system resources or quota. On a typical site, this error
will only occur if you are using (very) big arrays.
User action : delete any unused variable, clear the plot if any, and then retry. If this does
not work, exit the program, reenter it and retry. If this does not work, try using images
instead of arrays. If this is not sufficient, consider whether you really need such big arrays.
If the answer is yes, you might consider asking your system manager to increase the relevant
quota.

W-MTH, Missing operand in formula <String>
SIC, Mathematic and logical expression analysis modules. One operator or function is left
without operand after parsing.
User action : Correct the expression.

E-MTH, Missing operator after closing bracket
SIC, Mathematic and logical expression analysis modules.
User action : Correct the expression.

E-MTH, Result type mismatch
SIC, Mathematic and logical expression analysis modules. You are trying to assign a logical
value to a numerical variable or so.
User action : Correct the expression.

W-MTH, Result was not yet assigned
SIC, Mathematic and logical expression analysis modules. This is an internal logic error.
An expression was successfully analyzed, but could not be evaluated because of an internal
error.
User action : Submit an SPR, with the faulty mathematic formula. This is only a warning,
and in principle the result should be correct. If not, simplify your formula, or add parenthe-
sis to avoid possible ambiguities and try again. Eventually break your formula into several
consecutive ones.

9 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 108

W-MTH, Scratch operand remaining <integer>
SIC, Mathematic and logical expression analysis modules. This is an internal logic error.
An expression was successfully analyzed, but could not be evaluated because of an internal
error.
User action : Submit an SPR, with the faulty mathematic formula. This is only a warning,
and in principle the result should be correct. If not, simplify your formula, or add parenthe-
sis to avoid possible ambiguities and try again. Eventually break your formula into several
consecutive ones.

E-MTH, Too many operands
SIC, Mathematic and logical expression analysis modules. Formula is too complex, and
does not fit in the internal buffer.
User action : Simplify your formula, and try again. Use intermediate variables to break
your formula into several smaller pieces. If this is a serious limitation to you, submit an
SPR, and we will increase the buffer size.

E-MTH, Too many operands in function call
SIC, Mathematic and logical expression analysis modules. A function was called with the
wrong number of arguments.
User action : Correct the call

E-MTH, Unknown variable <String>
SIC, Mathematic and logical expression analysis modules. The parsing module was expect-
ing a variable.
User action : This is presumably due to a typing mistake. Correct your expression.

E-MTH, Unknown function <String>
SIC, Mathematic and logical expression analysis modules. The parsing module was expect-
ing a user defined function.
User action : This is presumably due to a typing mistake. Correct your expression.

E-MTH, Unknown logical or relational operator <String>
SIC, Mathematic and logical expression analysis modules. The parsing module was expect-
ing an operator.
User action : This is presumably due to a typing mistake. Correct your expression.

9.10 O through R

E-ON, Unknown argument <String>
SIC, ON command.
User action : See HELP ON.

E-PARSE, Implicit transposition not yet supported
SIC, Array dimension parser. The specified array subset is invalid, because it requires an
implicit transposition of the array variable.
User action : Read the section upon what array variables.

E-PARSE, Index <Integer> exceeds dimension <Integer> of <String>
SIC, Array dimension parser. The specified array subset is invalid, because the arrays size
is exceeded
User action : Correct your error.

9 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 109

E-PARSE, Variable <String> has only ’<Integer> dimensions
SIC, Array dimension parser. The specified array subset is invalid, because the dimension
does not exist in the array.
User action : Correct your (typing) error.

W-PAUSE, <^C> ignored, level too deep
SIC, monitor routine. The user pressed <^C> during a command execution, but the execu-
tion level is too high to allow a PAUSE to be delivered. The execution continues normally.
User action : None, unless a definite interruption is needed in which case the user might
consider typing <^Y>. . .

W-PAUSE, Error returned by aborted command ignored
SIC, monitor routine. A PAUSE was generated as the result of pressing <^C> during a
command execution, but the command completed with an error status. The <^C> takes
precedence over the error to avoid using the error recovery procedure. This message follows
a "I-PAUSE, Generated by pressing <^C>" message.
User action : As for any pause.

I-PAUSE, Generated by pressing <^C>
SIC, monitor routine. A PAUSE was generated as the result of pressing <^C> during a com-
mand execution. The previous command completed normally.
User action : Type any command you want. The interrupted execution level will be
restarted by command CONTINUE.

F-PAUSE, Level depth too large
SIC, monitor routine. An error occured, but no PAUSE could be delivered because the input
level is already too deep. The program aborts execution with a symbolic stack dump. This
error can (in principle) only occur if you are using a set of nested macros as error recovery
procedure, and with an invalid command in one of the macros...
User action : Correct error and restart the program. Avoid using such complex error
recovery systems.

F-PAUSE, Session is not interactive
SIC, monitor routine. An error occured, but no PAUSE could be delivered because the session
is a batch mode. The program aborts execution with a symbolic stack dump.
User action : correct the invalid command which caused the error and resubmit the job.

E-RECALL, Command line not found
SIC, RECALL command. No command line in the current stack buffer matches the abbre-
viation given.
User action : Use the TYPE command to see if the line you need does exist. This error may
be due to an incorrectly specified language field. See HELP RECALL.

E-RECALL, Non existent line in buffer
SIC, RECALL command. The requested line does not exist in the current stack buffer.
User action : Specify a valid command number.

9.11 S

E-SEXA, Invalid minute field
SIC, Sexagesimal decoding routine. The minute field is negative, or greater than 60.

9 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 110

User action : Correct typing errors.

E-SEXA, Invalid second field
SIC, Sexagesimal decoding routine. The minute field is negative, or greater than 60.
User action : Correct typing errors.

E-SEXA, Syntax error
SIC, Sexagesimal decoding routine. Valid syntaxes for sexagesimal arguments are +DD.DDD,
+DD:MM.MMM, and +DD:MM:SS.SSS.
User action : Correct typing errors.

W-SIC, Ambiguous keyword, choices are :
SIC, SIC command. The first argument is ambiguous.
User action : specify more characters.

W-SIC, Cannot change SIC\ language status
SIC, SIC command. Information message : language SIC\ cannot be removed from the
active scope.

W-SIC, Cannot set HELP mode <String>
SIC, SIC command. The user requested an invalid mode for HELP.
User action : specify a valid mode. Valid modes are PAGE and SCROLL.

W-SIC, Cannot set <String> language <String2>
SIC, SIC command. Information message : languages can only be ON or OFF. Library only
languages cannot be brought into the active scope.

E-SIC, Cannot set <String> switch <String2>
SIC, SIC command. The status <String2> does not exist for the switch <String>
User action : check for typing errors.

E-SIC, Command invalid in this context <string>
SIC, monitor routine. Command IF, ELSE and ENDIF can only be used in procedures.
User action : use a procedure.

F-SIC, Commands must be character*12
SIC, initialization routine. The command names are too long or too short. Execution
aborts.
User action : notify the programmer.

F-SIC, Demonstration period exhausted, Call your system manager

User action : ask your system manager to buy an authorized copy.

F-SIC, Duplicate language name
SIC, initialization routine. The language name is already used. Execution aborts.
User action : notify the programmer.

W-SIC, Edit mode requires an ANSII terminal
SIC, SIC command. Information message : the user requested the EDIT mode, but is not
logged on a ANSII (or compatible) video terminal. EDIT mode is left OFF.

9 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 111

I-SIC, Editor is <String>
SIC, SIC command. Information message specifying which text editor is used by command
EDIT.

I-SIC, HELP mode is <String>
SIC, SIC command. Information message specifying the HELP mode.

W-SIC, Incorrect nesting of IF blocks
SIC, monitor routine. Some IF blocks were not properly nested and are still opened when
a macro or loop terminates. The opened blocks are closed by sic.
User action : although this is only a warning, it may be wise to check the current macro
for possible error(s).

F-SIC, Initialization error number <Integer>
SIC, initialization routine. An undocumented initialization error occurred. Execution
aborts.
User action : notify the programmer, who should submit an SPR.

F-SIC, Internal logic error LIRE = -1
SIC, command reading routine. This is a fatal bug check.
User action : Submit an SPR, with as much information as you can (log file, program
listing, etc...).

E-SIC, Invalid nesting of loops and IF blocks
SIC, monitor routine. Some FOR loops were not properly nested and are still opened when
an IF block terminates.
User action : Check the current macro for error(s).

W-SIC, Invalid precision <string>
SIC, SIC command. The only supported precisions are SINGLE (or REAL) and DOUBLE.
Previous precision is kept.
User action : specify a valid precision.

F-SIC, Language initialization failure
SIC, initialization routine. This message is preceded by a more detailed account of the
problems. This is a fatal error, and the program execution aborts with a symbolic stack
dump.
User action : notify the programmer.

F-SIC, Programming error: recursive call to SIC
SIC, monitor routine. The programmer made a recursive call to sic. This is a fatal error,
and the program execution aborts with a symbolic stack dump.
User action : notify the programmer.

W-SIC, Session is not interactive, EDIT and MEMORY Off
SIC, monitor routine. Information message. This message appears at the beginning of the
program (usually when nobody is available to read it...).

F-SIC, SIC is not loaded
SIC, monitor routine. The program attempted to use sic before initializing the interpreter.
This is a programming error.
User action : notify the programmer.

9 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 112

I-SIC, <String> switch is <String2>
SIC, SIC command. Information message.

I-SIC, <String> language is <String>
SIC, SIC command. Information message.

W-SIC, Sub-process <String> is still active
SIC, exit routine. A sub-process has been created earlier by the SYSTEM command. The
sub-process is not deleted.
User action : You can attach to this sub-process at any time by the VMS command ATTACH,
or delete it by the VMS command STOP.

E-SIC, Too many IF blocks
SIC, monitor routine. You are attempting to nest IF blocks too deeply.
User action : Do not. Find another way to solve your problem.

F-SIC, Too many commands and options. This program is only
dimensioned for <Integer> user-defined commands.
SIC, initialization routine. The program has too many commands and options. Execution
aborts.
User action : notify the programmer, who may submit an SPR (even though this is no an
error in sic just a limitation).

F-SIC, Too many languages
SIC, initialization routine. The program has too many languages. Execution aborts.
User action : notify the programmer.

W-SIC, Undefined character expression <string>
Formatting routine. The specified string is not a valid character string. This message is
usually preceded by other ones that give additional information.
User action : Correct typing mistake(s)

W-SIC, You are using a demonstration version
SIC. The version of sic you are using is a demonstration version with a limited validity
period (usually 3 to 6 months). Contact the authors about a permanent licence (available
at no cost for academic institutions).
User action : Beware that the validity period will expire...

E-SYMBOL, Invalid symbol name <String>
SIC, SYMBOL routine. A symbol name must begin with an alphabetic uppercase character.
User action : use a valid name.

F-SYMBOL, SIC is not loaded
SIC, DEFINE SYMBOL routine. The program attempts to define a symbol before SIC has
been initialized. This is a programming error.
User action : notify the programmer.

E-SYMBOL, String too long, translation failed
SIC, monitor routine. The line buffer is too short to accomodate the symbol translation.
The command is not executed, and an error occurs.
User action : : If possible shorten your command or symbol translation. Eventually contact
the programmer.

9 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 113

E-SYMBOL, Symbol definition too long
SIC, SYMBOL command. The equivalence name is too long. The symbol is undefined.
User action : cut the definition in two symbols and use concatenation when translation is
required.

W-SYMBOL, Symbol name too long <String>
SIC, SYMBOL command. Symbol names must be shorter than 12 characters.
User action : use shorter symbol names.

W-SYMBOL, Symbol truncated to <String>
SIC, SYMBOL command. A symbol name contained more than 12 characters and has been
truncated.

E-SYMBOL, Too many symbols
SIC, SYMBOL routine. There are too many symbols, the new definition has not been added.
User action : delete unwanted symbols before adding a new one.

I-SYMBOL, Table is empty
SIC, SYMBOL command. Information message, there are no symbols defined.

I-SYMBOL, Table contains :
SIC, SYMBOL command. Information message, followed by the list of symbols and equiva-
lence strings.

W-SYMBOL, Undefined symbol <String>
SIC, SYMBOL command. The specified symbol is undefined.

E-SYSTEM, Sub-process cannot be activated
SIC, SYSTEM command with or without arguments. The sub-process could not be created
because of lack of system resources. The VMS error message follows this error.
User action : If the command had an argument, retry it without as you may connect to an
existing subprocess. If this fails, it is generally due to an exceeded quota of subprocesses. If
you have other subprocesses running, the SYSTEM command lists the current subprocesses
and prompts you to which one you want to attach. If none is available, the SYSTEM command
will return you an error.

E-SYSTEM, Sub-process <String> could not be attached
SIC, SYSTEM command without argument, or with option /PROCESS. The programs failed
to attach to an existing sub-process, previously created by the SIC\SYSTEM command, or by
another program. If the option /PROCESS was not present, the command will try to create
a new one.
User action : Check process name in case you used the /PROCESS option.

W-SYSTEM, More than <number> sub-processes active
SIC, SYSTEM command with or without arguments. You have reached the maximum num-
ber of sub-processes allowed within sic˙
User action : If the command had an argument, retry it without as you may connect to an
existing subprocess. If this fails, the SYSTEM command lists the current subprocesses and
prompts you to which one you want to attach. If none is available, the SYSTEM command
will return you an error.

9 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 114

E-SYSTEM, Sub-process cannot be created
SIC, SYSTEM command with or without arguments. The sub-process cannot be created,
usually because of lack of system resources. The VMS error message follows this error.
User action : If the command had an argument, retry it without as you may connect to an
existing subprocess. If this fails, it is generally due to an exceeded quota of subprocesses. If
you have other subprocesses running, the SYSTEM command lists the current subprocesses
and prompts you to which one you want to attach. If none is available, the SYSTEM command
will return you an error.

9.12 T

E-TYPE, Cannot open <String>
SIC, TYPE command. The specified file or macro could not be opened. This message is
followed by a more precise reason.
User action : check for typing errors.

E-TYPE, Error reading <String>
SIC, TYPE command. A read error occured during the typing of a file or macro. The TYPE
command aborts.
User action : most likely you are trying to type a binary file or something like this...
Otherwise, it is a hardware problem. Notify your system manager.

9.13 U through Z

E-VARIABLE, Internal error, no back pointer
SIC, DELETE /VARIABLE command. This is an internal logic error.
User action : Submit an SPR.

E-VARIABLE, Invalid variable name <String>
SIC, DEFINE LET /NEW or FOR commands. Variable names must be at most 15 characters
and begin with a letter.
User action : use a valid name.

E-VARIABLE, Program defined variables are protected
SIC, DELETE /VARIABLE command. You attempt to delete a variable that has been created
by program. This is not allowed.

F-VARIABLE, SIC is not loaded
Calling program. The program attempts to define variables before the interpreter has been
initialized. This is a programming error.
User action : notify the programmer.

E-VARIABLE, Too many variables
SIC, SIC, DEFINE LET /NEW or FOR commands. You attempted to define too many vari-
ables.
User action : Delete unused variables and retry. If this is not sufficient, submit an SPR,
and we will increase the buffer size.

E-VARIABLE, Variable <String> already exists
SIC, DEFINE or LET /NEW. The specified name is already a known variable.
User action : use a different name, or delete the variable before.

9 SIC ERROR MESSAGES AND RECOVERY PROCEDURES 115

E-VARIABLE, Variable name too long
SIC, DEFINE LET /NEW or FOR commands. Variable names must be at most 15 characters.
User action : use a shorter name.

E-ZCRONGNEUGNEU, j’y arrive pas
Congratulations, you got a free bottle of champagne if. . .
you can reproduce the error.
User action : Contact the authors.

10 TASK DEMONSTRATION 116

10 Task demonstration

10.1 demo

EXAMPLE Demonstration program, mostly used for GILDAS tests
PRIMES Compute primes numbers (used for GILDAS tests)

10.2 EXAMPLE

EXAMPLE

This is a sample program doing nothing, but used to test GILDAS...

10.3 PRIMES

PRIMES

This is a sample program computing primes numbers up to an internal lim-
it, used to test GILDAS.

Index

ACCEPT, 15, 32
/ARRAY, 15, 33
/BINARY, 15, 33
/COLUMN, 15, 33
/FORMAT, 34
/LINE, 34
Excel, 34

BEGIN, 35
BREAK, 18, 35
BUTTON, 81

CHARACTER, 87
COMPUTE, 35, 91

BTEST, 39
DATE, 37
DERIVATIVE, 39
DIMOF, 37
EXTRACT, 37
FFT, 37
FOURT, 38
GAG DATE, 38
GATHER, 38
HISTOGRAM, 38
INTEGRAL, 39
LOCATION, 39
RANKORDER, 39

CONTINUE, 18, 19, 41

DEFINE, 8, 41
/GLOBAL, 47
/LIKE, 47
ALIAS, 41
CHARACTER, 42
COMMAND, 25, 42
DOUBLE, 42
FITS, 43
FUNCTION, 43
HEADER, 12, 44
IMAGE, 12, 45, 92
INTEGER, 45
LANGUAGE, 45
LOGICAL, 46
REAL, 46
STRUCTURE, 46
TABLE, 12, 46

UVTABLE, 14, 47
DELETE, 48

/SYMBOL, 8
/VARIABLE, 14

demo, 111

EDIT, 6, 48
ELSE, 17, 48
ELSE IF, 17
END, 48, 82
ENDIF, 17
EXAMINE, 8, 15, 49

/FUNCTION, 10
EXAMPLE, 111
EXIT, 18, 49
EXPLAIN, 84

FILE, 88
FITS, 84
FOR, 16, 50

/WHILE, 17

GO, 82, 88
GUI Mode, 20
GUIΓE30FBUTTON, 20, 22
GUIΓE30FGO, 20, 22
GUIΓE30FMENU, 20
GUIΓE30FPANEL, 20, 22

/DETACH, 20

HEADER, 85
HELP, 4, 5, 50

IF, 17, 51
IMPORT, 51
INTEGER, 88

Language, 32, 81, 84, 87
LET, 8, 14, 51

/CHOICE, 21, 53
/FILE, 22, 53
/FORMAT, 53
/FORMULA, 54
/INDEX, 21, 54
/LIKE, 11
/LOWER, 54
/NEW, 8, 54

117

INDEX 118

/PROMPT, 21, 54
/RANGE, 21, 54
/REPLACE, 55
/SEXAGESIMAL, 55
/STATUS, 55
/UPPER, 55
/WHERE, 11, 55

LOGICAL, 88

Main input window, 20
MENU, 82
MESSAGE, 56
MFIT, 57

/EPSILON, 58
/METHOD, 58
/QUIET, 59
/START, 59
/STEP, 59

MORE, 89

NEXT, 16, 18, 59

ON, 59
ERROR, 60

ON ERROR, 19
Optional window, 20

PANEL, 83
/DETACH, 20

PARSE, 60
PAUSE, 18, 19, 61
PRIMES, 111
PYTHON, 61

QUIT, 19, 62

REAL, 89
RECALL, 6, 62
RETURN, 19, 63

BASE, 19
ERROR, 19

RUN, 27, 30, 31, 85
/EDIT, 30

SAY, 15, 26, 63
/FORMAT, 63

SIC, 23, 25, 63
APPEND, 65
BEEP, 65
COPY, 23, 66

CPU, 65
DATE, 65
DEBUG, 65
DELAY, 67
DELETE, 23, 67
DIRECTORY, 23, 24, 67
EDIT, 7, 25, 67
ERROR, 67
EXPAND, 68
EXTENSION, 16, 26, 68
FIND, 68
FLUSH, 69
HELP, 26, 69
INTEGER, 69
LANGUAGE, 69
LOCK, 69
LOGICAL, 25, 26, 70
MACRO, 70
MEMORY, 25, 70
MESSAGE, 70
MKDIR, 73
MODIFIED, 73
OUTPUT, 26, 73
PRECISION, 8, 26, 74
PRIORITY, 74
RANDOM SEED, 75
RENAME, 23, 75
SAVE, 75
SEARCH, 76
SYNTAX, 76
SYSTEM, 77
TIMER, 77
USER, 77
VERIFY, 25, 77
VERSION, 77
WAIT, 77
WHICH, 78
WINDOW, 78

SORT, 78
SPY, 31, 86
SUBMENU, 82
SUBMIT, 27, 30, 86

/EDIT, 30
SYMBOL, 7, 78
SYNTAX\, 79
SYSTEM, 23, 24, 80

/PROCESS, 23, 24

INDEX 119

TASK\, 29
CHARACTER, 29
FILE, 29
INTEGER, 29
LOGICAL, 29
REAL, 29
VALUES, 29

TRANSPOSE, 86
TYPE, 16, 80

URI, 83

VALUES, 89

WAIT, 83
WRITE, 89

	Introduction
	The SIC Monitor
	Basic Features
	Syntax
	The Prompt
	The on-line HELP
	The Stack
	Line Editing Facility
	The Log File
	Symbols

	Variables and Expressions
	Definitions and Assignments
	Functions and Operators
	Vector Operations
	Implicit Loops
	Conditional Assignment
	Size casting
	GILDAS Images
	GILDAS Headers
	Character Variables and Implicit Formatting
	Initializing variables from external files

	SIC as a programming language
	Procedures (or Command Files)
	Loops
	Structured Programming and Logical Expressions
	Execution Level
	Error Recovery

	The GUI (``Graphics-User-Interface'') Mode
	Detached menus
	Assigning variables in ``Window'' mode
	Actions and Buttons in ``Window'' mode
	Help file structure

	Interacting with the Operating System
	File Operations
	SYSTEM command: VMS Version
	SYSTEM Command: Unix operating system

	Customizing
	Logical Names
	User Defined Commands
	Initialization File
	The SIC Command

	Running Tasks
	Window Mode
	Query Mode
	EDIT Mode
	Specifying the .init File
	Errors and Aborting
	Log Files
	Synchronizing Jobs
	Obtaining Explanations: EXPLAIN Command

	SIC Programming Manual
	SIC Language Internal Help
	Language
	ACCEPT
	ACCEPT /ARRAY
	ACCEPT /BINARY
	ACCEPT /COLUMN
	ACCEPT /FORMAT
	ACCEPT /LINE
	ACCEPT Excel

	BEGIN
	BREAK
	COMPUTE
	COMPUTE EXTRACT
	COMPUTE DATE
	COMPUTE DIMOF
	COMPUTE FFT
	COMPUTE FOURT
	COMPUTE GATHER
	COMPUTE GAG_DATE
	COMPUTE HISTOGRAM
	COMPUTE LOCATION
	COMPUTE RANKORDER
	COMPUTE INTEGRAL
	COMPUTE DERIVATIVE
	COMPUTE BTEST

	CONTINUE
	DEFINE
	DEFINE ALIAS
	DEFINE CHARACTER
	DEFINE COMMAND
	DEFINE DOUBLE
	DEFINE FITS
	DEFINE FUNCTION
	DEFINE HEADER
	DEFINE IMAGE
	DEFINE INTEGER
	DEFINE LANGUAGE
	DEFINE LOGICAL
	DEFINE REAL
	DEFINE STRUCTURE
	DEFINE TABLE
	DEFINE UVTABLE
	DEFINE /GLOBAL
	DEFINE /LIKE

	DELETE
	EDIT
	ELSE
	END
	EXAMINE
	EXIT
	FOR
	HELP
	IF
	IMPORT
	LET
	LET /CHOICE
	LET /FILE
	LET /FORMAT
	LET /FORMULA
	LET /INDEX
	LET /LOWER
	LET /NEW
	LET /PROMPT
	LET /RANGE
	LET /REPLACE
	LET /SEXAGESIMAL
	LET /STATUS
	LET /UPPER
	LET /WHERE

	MESSAGE
	MFIT
	MFIT /EPSILON
	MFIT /METHOD
	MFIT /QUIET
	MFIT /START
	MFIT /STEP

	NEXT
	ON
	ON ERROR

	PARSE
	PAUSE
	PYTHON
	QUIT
	RECALL
	RETURN
	SAY
	SAY /FORMAT

	SIC
	SIC APPEND
	SIC BEEP
	SIC CPU
	SIC DATE
	SIC DEBUG
	SIC COPY
	SIC DELAY
	SIC DELETE
	SIC DIRECTORY
	SIC EDIT
	SIC ERROR
	SIC EXPAND
	SIC EXTENSION
	SIC FIND
	SIC FLUSH
	SIC HELP
	SIC INTEGER
	SIC LANGUAGE
	SIC LOCK
	SIC LOGICAL
	SIC MACRO
	SIC MEMORY
	SIC MESSAGE
	SIC MKDIR
	SIC MODIFIED
	SIC OUTPUT
	SIC PRECISION
	SIC PRIORITY
	SIC RANDOM_SEED
	SIC RENAME
	SIC SAVE
	SIC SEARCH
	SIC SYNTAX
	SIC SYSTEM
	SIC TIMER
	SIC USER
	SIC VERIFY
	SIC VERSION
	SIC WAIT
	SIC WHICH
	SIC WINDOW

	SORT
	SYMBOL
	SYNTAX"026E30F
	SYSTEM
	TYPE
	@

	GUI Language Internal Help
	Language
	BUTTON
	END
	GO
	MENU
	SUBMENU
	PANEL
	WAIT
	URI

	VECTOR Language Internal Help
	Language
	EXPLAIN
	FITS
	HEADER
	RUN
	SPY
	SUBMIT
	TRANSPOSE

	TASK Language Internal Help
	Language
	CHARACTER
	FILE
	GO
	INTEGER
	LOGICAL
	MORE
	REAL
	VALUES
	WRITE

	SIC Error Messages and Recovery Procedures
	A through C
	D
	E
	F
	G
	H
	I
	J trough L
	M
	O through R
	S
	T
	U through Z

	Task demonstration
	demo
	EXAMPLE
	PRIMES

